add finetune

This commit is contained in:
transcendentsky 2024-03-20 15:58:48 +08:00
parent 840009725f
commit 173762f756
5 changed files with 344 additions and 14 deletions

50
configs/vit_sub.yaml Normal file
View File

@ -0,0 +1,50 @@
# ---------------------- Common Configs --------------------------
base:
base_dir: "../runs/sam/"
tag: ''
stage: ''
logger:
mode: ['tb', ]
# mode: ''
recorder_reduction: 'mean'
training:
save_mode: ['all', 'best', 'latest'] # ,
batch_size : 2 # 8 for A100
num_workers : 8
num_epochs : 100 # epochs
use_amp: false
save_interval : 1
val_check_interval: 6
load_pretrain_model: false
# optim:
lr: 0.00002
decay_step: 2000
decay_gamma: 0.8
weight_decay: 0.0001
alpha: 0.99
validation_interval: 100
sam_checkpoint: "/home1/quanquan/code/projects/medical-guangdong/segment-anything/sam_vit_b_01ec64.pth" # 103 server
model_type: "vit_b"
continue_training: false
load_optimizer: false
breakpoint_path: "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b9/lora3/ckpt/model_iter_360000.pth"
dataset:
types: ['3d'] # ['3d', '2d']
split: 'train'
data_root_path: '/home1/quanquan/datasets/'
dataset_list: ["pancreas"]
data_txt_path: './datasets/dataset_list/'
dataset2d_path: "/home1/quanquan/datasets/08_AbdomenCT-1K/"
cache_data_path: '/home1/quanquan/datasets/cached_dataset2/'
cache_prefix: ['6016'] # '07'
specific_label: [2]
test:
batch_size: 1

View File

@ -573,7 +573,7 @@ if __name__ == "__main__":
sam = sam_model_registry[model_type](checkpoint=None)
learner = SamLearner(sam_model=sam, config=config, data_engine=DataManager(img_size=(1024,1024)))
learner.use_lora()
pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b9/lora3/ckpt/model_iter_360000.pth"
pth = "model_iter_360000.pth"
learner.load_well_trained_model(pth)
learner.cuda()

View File

@ -118,9 +118,29 @@ Then run
python -m datasets.cache_dataset3d
```
## Configs Settings
important settings
```yaml
base:
base_dir: "../runs/sam/" # logging dir
dataset:
types: ['3d'] # ['3d', '2d']
split: 'train'
data_root_path: '../datasets/'
dataset_list: ["pancreas"]
data_txt_path: './datasets/dataset_list/'
dataset2d_path: "../08_AbdomenCT-1K/"
cache_data_path: '../cached_dataset2/'
cache_prefix: ['6016'] # cache prefix of cached dataset for training
# For example: ['07',] for 07_WORD
```
## Start Training
## Start Training from scratch (SAM)
Run training on multi-gpu
@ -141,11 +161,46 @@ python -m core.volume_predictor
```
## Testset Validation
```python
EX_CONFIG = {
'dataset':{
'prompt': 'box', # prompt type: box or point
'dataset_list': ['word'], # dataset_list name
'label_idx': 2, # label index for inference,
},
"pth": "./model.pth"
}
```
```
python -m test.volume_eval
```
## Finetuning (Recommended)
```yaml
training:
breakpoint_path: "./model.pth" # pretrained weight path
```
```
python -m core.ddp_sub --tag run
```
## Validation with Finetuned Weights
```
python -m test.volume_eval_sublora
```
```python
EX_CONFIG = {
'dataset':{
'prompt': 'box', # prompt type: box or point
'dataset_list': ['word'], # dataset_list name
'label_idx': 2, # label index for inference,
},
"pth": "./model_finetuned.pth"
}
```
<p align="center" width="100%">

View File

@ -140,28 +140,22 @@ if __name__ == "__main__":
'prompt': 'box',
'dataset_list': ['word'], # ["sabs"], chaos, word
'label_idx': 1,
}
},
'pth': "model_latest.pth"
}
config = ConfigManager()
config.add_config("configs/vit_b_103.yaml")
config.add_config(EX_CONFIG)
print(config)
# Init Model
model_type = "vit_b"
sam = sam_model_registry[model_type](checkpoint=None)
learner = SamLearner(sam_model=sam, config=config, data_engine=DataManager(img_size=(1024,1024)))
learner.use_lora()
# pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b3/lora+edge2/ckpt_v/model_latest.pth"
# pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b3/lora+edge2/ckpt/model_epoch_20.pth"
# pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b3/lora+edge2/ckpt/model_epoch_16.pth"
# pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b3/lora_small/ckpt/model_epoch_6.pth"
# pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b9/lora/ckpt/model_epoch_50.pth"
# pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b11/spec_8/ckpt_v/model_latest.pth"
# pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b11/spec_5/ckpt/model_epoch_100.pth"
pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b9/lora3/ckpt/model_iter_360000.pth"
# pth = "/home1/quanquan/code/projects/finetune_large/runs/sam/ddp_b9/lora3/ckpt/model_iter_500000.pth"
learner.load_well_trained_model(pth)
learner.load_well_trained_model(EX_CONFIG['pth'])
learner.cuda()
predictor = VolumePredictor(
model=learner.model,

231
test/volume_eval_sublora.py Normal file
View File

@ -0,0 +1,231 @@
"""
Volume evalutaion
"""
import torch
import numpy as np
from torch.utils.data import DataLoader
# from datasets.dataset3d import Dataset3D
from tutils.new.manager import ConfigManager
from datasets.eval_dataloader.loader_abstract import AbstractLoader
from core.volume_predictor import VolumePredictor
from datasets.data_engine import DataManager, BoxPromptGenerator, PointPromptGenerator
from tutils import tfilename
from tutils.new.trainer.recorder import Recorder
from trans_utils.metrics import compute_dice_np
from trans_utils.data_utils import Data3dSolver
# from monai.metrics import compute_surface_dice
import surface_distance as surfdist
from tutils.tutils.ttimer import timer
class Evaluater:
def __init__(self, config) -> None:
self.config = config
self.recorder = Recorder()
def solve(self, model, dataset):
# model.eval()
self.predictor = model
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
for i, data in enumerate(dataloader):
# if i <4:
# print
# continue
# for k, v in data.items():
# if isinstance(v, torch.Tensor):
# data[k] = v.to(self.rank)
if self.config['dataset']['prompt'] == 'box':
# res = self.eval_step_slice(data, batch_idx=i)
res = self.eval_step(data, batch_idx=i)
if self.config['dataset']['prompt'] == 'point':
res = self.eval_step_point(data, batch_idx=i)
self.recorder.record(res)
res = self.recorder.cal_metrics()
print(res)
print("prompt:", self.config['dataset']['prompt'], " class_idx:", self.config['dataset']['label_idx'])
def eval_step(self, data, batch_idx=0):
name = data['name']
dataset_name = data['dataset_name'][0]
label_idx = data['label_idx'][0]
template_slice_id = data['template_slice_id'][0]
assert data['img'].shape[1] >= 3, f" Got img.shape {data['img'].shape}"
if template_slice_id == 0:
template_slice_id += 1
elif template_slice_id == (data['img'].shape[0] - 1):
template_slice_id -= 1
spacing = data['spacing'].numpy().tolist()[0]
if data['img'].shape[-1] < 260:
# assert data['img'].shape[-1] < 260, f"Got {data['img'].shape}"
img = data['img'][0][:,:256,:256]
label = data['label'][0][:,:256,:256]
else:
img = data['img'][0]
label = data['label'][0]
# img = torch.clip(img, -200, 600)
box = BoxPromptGenerator(size=None).mask_to_bbox(label[template_slice_id].detach().cpu().numpy())
box = np.array([box])
pred, stability = self.predictor.predict_volume(
x=img,
box=box,
template_slice_id=template_slice_id,
return_stability=True,
)
prompt_type = 'box'
dice = compute_dice_np(pred, label.detach().cpu().numpy())
# Data3dSolver().simple_write(pred, path=tfilename(f"visual/{dataset_name}/pred_{batch_idx}_label_{label_idx}_{prompt_type}.nii.gz"), spacing=spacing)
# Data3dSolver().simple_write(label.detach().cpu().numpy(), path=tfilename(f"visual/{dataset_name}/label_{batch_idx}.nii.gz"))
# Data3dSolver().simple_write(img.detach().cpu().numpy(), path=tfilename(f"visual/{dataset_name}/img_{batch_idx}.nii.gz"))
# np.save(tfilename(f"meta/{dataset_name}/stability_{batch_idx}.npy"), stability)
# nsd = compute_surface_dice(torch.Tensor(pred), label.detach().cpu(), 1)
# surface_distances = surfdist.compute_surface_distances(
# label.detach().cpu().numpy(), pred, spacing_mm=(0.6, 0.6445, 0.6445))
# nsd = surfdist.compute_surface_dice_at_tolerance(surface_distances, 1)
nsd = 0
print(dataset_name, name, dice, nsd)
# import ipdb; ipdb.set_trace()
return {"dice": dice, "nsd": nsd}
def eval_step_point(self, data, batch_idx=0):
name = data['name']
dataset_name = data['dataset_name'][0]
label_idx = data['label_idx'][0]
template_slice_id = data['template_slice_id'][0]
spacing = data['spacing'].numpy().tolist()[0]
assert data['img'].shape[1] >= 3, f" Got img.shape {data['img'].shape}"
if template_slice_id == 0:
template_slice_id += 1
elif template_slice_id == (data['img'].shape[0] - 1):
template_slice_id -= 1
if data['img'].shape[-1] < 260:
# assert data['img'].shape[-1] < 260, f"Got {data['img'].shape}"
img = data['img'][0][:,:256,:256]
label = data['label'][0][:,:256,:256]
else:
img = data['img'][0]
label = data['label'][0]
box = BoxPromptGenerator(size=None).mask_to_bbox(label[template_slice_id].detach().cpu().numpy())
point = (box[0]+box[2])*0.5 , (box[1]+box[3])*0.5
point = np.array([point]).astype(int)
if label[template_slice_id][point[0,1], point[0,0]] == 0:
print("Use random point instead !!!")
point = PointPromptGenerator().get_prompt_point(label[template_slice_id])
point = np.array([point]).astype(int)
# box = np.array([box])
pred = self.predictor.predict_volume(
x=img,
point_coords=point,
point_labels=np.ones_like(point)[:,:1],
template_slice_id=template_slice_id,
)
dice = compute_dice_np(pred, label.detach().cpu().numpy())
prompt_type = 'point'
# Data3dSolver().simple_write(pred, path=tfilename(f"visual/{dataset_name}/pred_{batch_idx}_label_{label_idx}_{prompt_type}.nii.gz"), spacing=spacing)
# Data3dSolver().simple_write(pred, path=tfilename(f"visual/{dataset_name}/pred_{batch_idx}.nii.gz"))
nsd = compute_surface_dice(pred, label.detach().cpu().numpy())
print(dataset_name, name, dice)
return {"dice": dice, "nsd": nsd}
def eval_step_slice(self, data, batch_idx=0):
name = data['name']
dataset_name = data['dataset_name'][0]
label_idx = data['label_idx'][0]
template_slice_id = data['template_slice_id'][0]
assert data['img'].shape[1] >= 3, f" Got img.shape {data['img'].shape}"
if template_slice_id == 0:
template_slice_id += 1
elif template_slice_id == (data['img'].shape[0] - 1):
template_slice_id -= 1
spacing = data['spacing'].numpy().tolist()[0]
if data['img'].shape[-1] < 260:
# assert data['img'].shape[-1] < 260, f"Got {data['img'].shape}"
img = data['img'][0][:,:256,:256]
label = data['label'][0][:,:256,:256]
else:
img = data['img'][0]
label = data['label'][0]
img = img[template_slice_id-1:template_slice_id+2, :,:]
label = label[template_slice_id-1:template_slice_id+2, :,:]
template_slice_id = 1
# img = torch.clip(img, -200, 600)
box = BoxPromptGenerator(size=None).mask_to_bbox(label[template_slice_id].detach().cpu().numpy())
box = np.array([box])
pred, stability = self.predictor.predict_volume(
x=img,
box=box,
template_slice_id=template_slice_id,
return_stability=True,
)
prompt_type = 'box'
dice = compute_dice_np(pred, label.detach().cpu().numpy())
# Data3dSolver().simple_write(pred, path=tfilename(f"visual/{dataset_name}/pred_{batch_idx}_label_{label_idx}_{prompt_type}.nii.gz"), spacing=spacing)
# Data3dSolver().simple_write(label.detach().cpu().numpy(), path=tfilename(f"visual/{dataset_name}/label_{batch_idx}.nii.gz"))
# Data3dSolver().simple_write(img.detach().cpu().numpy(), path=tfilename(f"visual/{dataset_name}/img_{batch_idx}.nii.gz"))
# np.save(tfilename(f"meta/{dataset_name}/stability_{batch_idx}.npy"), stability)
print("Slice evaluation: ", dataset_name, name, dice)
return {"dice": dice}
def to_RGB(img):
pass
if __name__ == "__main__":
# from core.learner3 import SamLearner
# from modeling.build_sam3d import sam_model_registry
# from core.learner3 import SamLearner
from core.learner_sub1 import SamLearner
from modeling.build_sam3d2 import sam_model_registry
EX_CONFIG = {
'dataset':{
'prompt': 'box',
'dataset_list': ['guangdong'], # ["sabs"], chaos, word, decathlon_colon, pancreas
'label_idx': 2,
},
"pth": "./model_latest.pth"
}
config = ConfigManager()
# config.add_config("configs/vit_sub.yaml")
config.add_config("configs/vit_sub.yaml")
config.add_config(EX_CONFIG)
# Init Model
model_type = "vit_b"
sam = sam_model_registry[model_type](checkpoint=None)
learner = SamLearner(sam_model=sam, config=config, data_engine=DataManager(img_size=(1024,1024)))
learner.use_lora()
learner.use_lora_sub()
pth = EX_CONFIG['pth']
learner.load_well_trained_model(pth)
learner.cuda()
predictor = VolumePredictor(
model=learner.model,
use_postprocess=True,
use_noise_remove=True,)
solver = Evaluater(config)
dataset = AbstractLoader(config['dataset'], split="test")
tt = timer()
solver.solve(predictor, dataset)
print("Time: ", tt())