""" from ddp_b9.py Add additional bypass/side-way to finetune on other datasets """ import os import torch import torch.distributed as dist import torch.multiprocessing as mp from tutils import tfilename, tdir from datasets.dataset3d_2dmask import Dataset2D # from datasets.dataset3d import Dataset3D from datasets.cache_dataset3d3 import Dataset3D from datasets.dataset_merged import DatasetMerged, TestsetMerged from datasets.data_engine import DataEngine from modeling.build_sam3d2 import sam_model_registry from .learner_sub1 import SamLearner # from tutils.new.trainer.trainer_ddp import DDPTrainer from trans_utils.trainer_ddp import DDPTrainer # from .lora_sam import LoRA_Sam import warnings warnings.filterwarnings("ignore") def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=world_size) def cleanup(): dist.destroy_process_group() def ddp_train(rank, world_size, config): setup(rank, world_size) # sam_checkpoint = "/quanquan/code/segment-anything/segment_anything/sam_vit_b_01ec64.pth" # A800 server # sam_checkpoint = "/home1/quanquan/code/projects/medical-guangdong/segment-anything/sam_vit_b_01ec64.pth" # 103 server model_type = "vit_b" device = rank config_data = config['dataset'] data_type = config_data.get("types", ["3d", "2d"]) data_type = [data_type] if isinstance(data_type, str) else data_type dataset = Dataset3D(config_data, split='train') # assert len(validset) > 0 data_engine = DataEngine(dataset=dataset, img_size=(1024,1024)) sam = sam_model_registry[model_type](checkpoint=None) learner = SamLearner(sam_model=sam, config=config, data_engine=data_engine) learner.use_lora() learner.load_well_trained_model(config['training']['breakpoint_path']) # use preset path learner.use_lora_sub() ddp_trainer = DDPTrainer(config=config, rank=rank, world_size=world_size) ddp_trainer.fit(learner, trainset=data_engine, validset=None) cleanup() def get_parameter_number(model): total_num = sum(p.numel() for p in model.parameters()) trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad) return {'Total': total_num, 'Trainable': trainable_num} def run_demo(demo_fn, world_size, config): mp.spawn(demo_fn, args=(world_size,config), nprocs=world_size, join=True) from collections import OrderedDict import yaml import yamlloader def _ordereddict_to_dict(d): if not isinstance(d, dict): return d for k, v in d.items(): if isinstance(v, OrderedDict): v = _ordereddict_to_dict(v) d[k] = dict(v) elif type(v) == list: d[k] = _ordereddict_to_dict(v) elif isinstance(v, dict): d[k] = _ordereddict_to_dict(v) return d # CUDA_VISIBLE_DEVICES=4,5,6,7 python -m core.ddp_b3 --tag lora --config configs/vit_b_103.yaml if __name__ == "__main__": import argparse from tutils.new.manager import trans_args, trans_init, ConfigManager n_gpus = torch.cuda.device_count() # assert n_gpus >= 2, f"Requires at least 2 GPUs to run, but {__file__} Got{n_gpus}" if n_gpus == 1: print("Warning! Running on only 1 GPU! just for debug") world_size = n_gpus parser = argparse.ArgumentParser() parser.add_argument("--config", default="./configs/vit_sub_rectum.yaml") parser.add_argument("--func", default="train") parser.add_argument("--reuse", action="store_true") args = trans_args(parser=parser) config = ConfigManager() config.auto_init(file=__file__, args=args, ex_config=None) # config.save() path = tfilename(config['base']['runs_dir'], "config.yaml") with open(path, "w") as f: yaml.dump(_ordereddict_to_dict(config), f) print("Save config file to ", path) if n_gpus < 1: exit(0) run_demo(ddp_train, world_size, config)