2024-01-14 11:37:34 +08:00
2023-12-05 14:58:38 +08:00
2023-12-05 14:58:38 +08:00
2023-12-05 14:58:38 +08:00
2023-12-05 14:58:38 +08:00
2023-12-05 14:58:38 +08:00
2023-12-05 14:58:38 +08:00
2023-12-05 14:58:38 +08:00
2024-01-14 11:37:34 +08:00

Slide-SAM: Medical SAM meets sliding window

We upload the checkpoint recently! Please download by

https://pan.baidu.com/s/1jvJ2W4MK24JdpZLwPqMIfA

code7be9

Before Training

install tutils

pip install trans-utils

prepare datasets

We recommend you to convert the dataset into the nnUNet format.

00_custom_dataset
  imagesTr
    xxx_0000.nii.gz
    ...
  labelsTr
    xxx.nii.gz
    ...

try to use the function organize_in_nnunet_style or organize_by_names to prepare your custom datasets.

Then run

python -m  datasets.generate_txt

A [example]_train.txt will be generated in ./datasets/dataset_list/

The content should be like below

01_BCV-Abdomen/Training/img/img0001.nii.gz	01_BCV-Abdomen/Training/label/label0001.nii.gz
01_BCV-Abdomen/Training/img/img0002.nii.gz	01_BCV-Abdomen/Training/label/label0002.nii.gz
01_BCV-Abdomen/Training/img/img0003.nii.gz	01_BCV-Abdomen/Training/label/label0003.nii.gz

cache 3d data into slices

After generating the [example]_train.txt file, check the config file configs/vit_b.yaml.

Update the params in dataset by yours. And the dataset_list should be the name of the generated txt file [example].

Then run

python -m datasets.cache_dataset3d

Training

run training

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m core.ddp --tag debug

Testing

python -m core.volume_predictor
Description
No description provided
Readme 912 KiB
Languages
Python 100%