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1. Introduction 
 

The design of the All Digital FM Receiver circuit in this project uses Phase 
Locked Loop (PLL) as the main core. The task of the PLL is to maintain coherence 
between the input (modulated) signal frequency, iω  and the respective output 
frequency, oω  via phase comparison. This self-correcting ability of the system also 
allows the PLL to track the frequency changes of the input signal once it is locked. 

Frequency modulated input signal is assumed as a series of numerical values 
(digital signal) via 8-bit of analog to digital conversion (ADC) circuit. The FM 
Receiver gets the 8 bit signal every clock cycle and outputs the demodulated signal. 

The All Digital FM Receiver circuit is designed using VHDL, then simulated and 
synthesized using ModelSim SE 6 simulator and Xilinx ISE 6.3i, respectively. FPGA 
implementation also provided, here we use Virtex2 device. The real measurement is 
done using ChipScope Pro 6.3i. 
 
 

2. Architecture Description 
 

The system of All Digital FM Receiver consists of a digital PLL cascaded with 
digital low pass filter. The block diagram of system is shown in Fig. 1. 
 

θ θo

ωi ± ωo
f

ω  ± ω

Fig. 1 Block diagram of All Digital FM Receiver circuit 
 
 

2.1 Phase Detector 
 

Phase Detector (PD) detects phase error between input signal and output signal 
from NCO. This operation employs a multiplier module. The input signal is frequency 
modulated, so the input signal  can be expressed as follows, ( )iV n
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( ) sin( )i iV n n iω θ= +      (1) 
 
Feedback loop mechanism of the PLL will force NCO to generate sinusoidal signal 

with the same frequency of , then ( )oV n ( )iV n
 

( ) cos( )o iV n n oω θ= +      (2) 
 
Output of phase detector is product of these two signals, using familiar trigonometric 
identity we obtain 
 

[ ]
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d d i i i o

d
i i o i o

V n K n n
K n

ω θ ω θ

ω θ θ θ θ
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n

   (3) 

 
Kd is the gain of the phase detector. The first term in (3) corresponds to high 
frequency component. The second term corresponds to the phase difference between 

 and V . By removing the first term thru loop filtering, the phase difference 
can be obtained. 

( )iV n ( )o

 The block diagram of phase detector is a multiplier shown in Fig. 2.  
 

 
Fig. 2 Block diagram of multiplier as phase detector 

fmin 
<8,0,t> 

<8,0,t> 

 
 
Summary of operation: 
 

• input1 is fmin (modulated data), input2 is NCO’s output. Both input are 2’s 
complement in <8,0,t> format, please see [8] for details. 

 
• unit delay is used to synchronize operation, 
 
• then inputs values are multiplied, where input1 as multiplicand and input2 as 

multiplier, 
 
• product will be 16 bit in <16,0,t> format, then we scale it by cropping the 8 

most bits and feed it to the output in <8,0,t> format. 
 

In the VHDL model, we use Booth’s Multiplication algorithm [2] instead of 
simple signed arithmetic multiplier operation (denoted by ∗  ). Arithmetic multiplier 
will consume large area, while Booth’s multiplication algorithm for 8-bit 
multiplication only needs eight 8-bit adders which is much save in area consumption. 

input1 
D Q

<8,0,t>
output 

<8,0,t> 
unit delay input2 
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 For this algorithm, as shown in Fig. 3, the individual partial products 
determined from the multiplicand may be: added to, subtracted to, or may not change 
the final product at all based on the following rules: 
 

• the multiplicand is subtracted from the partial product upon encountering the 
first 1 in a string of 1’s in the multiplier, 

 
• the multiplicand is added to the partial product upon encountering the first 0 

provided that there was no previous 1 in a string of 0’s in the multiplier, 
 
• the partial product does not change when the bit is identical to the previous 

multiplier bit. 
 
 
2’s complement of multiplicand 10111 is 01001 
 
9 8 7 6 5   bit weighting 4 3 2 1 0
          1 0 1 1 1  multiplicand (-9) 
          1 0 0 1 1  multiplier (-13) 
               
 
-------------------
0 0 0 0 0 0 1 0 0 1  1

-- 
st multiplier bit 1 – subtract (add 2' complement) 

0 0 0 0 0 0 0 0 0    2nd multiplier bit also 1 – no change so no add/subtract 
1 1 1 1 0 1 1 1      3rd multiplier bit changes to 0 so add. Note sign extension 
0 0 0 0 0 0 0        4th multiplier bit also 0 – no change so no add/subtract 
0 0 1 0 0 1          5th multiplier bit changes to 1 so subtract (add 2’s compl) 
--------------------- 
0 0 0 1 1 1 0 1 0 1  product (+117) 
--------------------- 
Note the overflow of adding the partial product into 11th bit (bit weighting 10) of the 
product is ignored as it represents the original sign bit of the multiplier. 
 

Fig. 3 Paper and pencil illustration of Booth’s algorithm 

first 1 
first 0 
second 1 

 
 

2.2 Loop Filter 
 

Loop filter will remove the high frequency component in (3). Fig. 4 shows the 
block diagram of a first order loop filter used in the receiver system. In the VHDL 
model of this block, we need to treat a sign extension from <8,0,t> to <12,4,t> 
and a multiplication by constant of 15/16.  
 
Summary of operation: 
 

• input C is multiplier’s output in <8,0,t> format. Output is D1 <12,4,t>. 
D1 will be multiplied by 15/16 and then the product is summed back to C 

 
• dtemp <12,4,t> is internal signal which is the summing result of C and D1. 

C must be changed to <12,4,t> before summation, hence, 
 

 <8,0,t> <12,4,t> 
C C(7 downto 0) C(7)&C(7)&C(7)&C(7)&C(7 downto 0) 
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• dtemp will be assigned to D1. Then dtemp x 15/16 = dtemp x (1 – 1/16) = 
dtemp – (dtemp x 1/16) = dtemp - E 

 
• E =dtemp x 1/16, in reality 1/16 multiply can be implemented by just 4 bit 

right shift operation. Then no multiplier is required. 
 

dtemp <12,4,t> E <12,4,t> = dtemp x 1/16  
dtemp(11 downto 0) dtemp(11)&dtemp(11)&dtemp(11)&dtemp(11)&dtemp(11 

downto 4) 
 
 

 

Atemp

Fig. 4 Block diagram of first order loop filter 
 
 
First order loop filter as shown in Fig. 4 is a low pass filter with the transfer function 
 

 ( ) 1( )
( ) 0.9375

Y zH z
X z z

⎛ ⎞≡ = ⎜ −⎝
⎟
⎠

     (4) 

 
Which has a pole on the real axis at z = 0.9375. From stability property of discrete 
time filter, we know that H(z) is stable since its pole is located within the unit circle 
[1]. 
 
 

2.3 Numerical Controlled Oscillator 
 

Numerical Controlled Oscillator (NCO) will take the corrective error 
voltage,  and then shift its output frequency from its free-running value to the 
input signal frequency 

( )dV n

iω  and thus keep the PLL in lock. The block diagram can be 
seen in Fig. 5 as follows, 
 

<12,4,t> 
X Y

Z-1

15
16

×

D1C 
<8,0,t> <12,4,t> 

d i oθ θ θ≈ = −Atemp - E
<12,4,t> 
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D2 

Fig. 5 Block diagram of NCO 
 
 

Here we assume the NCO free running frequency is 1 MHz and the system 
clock frequency is 16 MHz; there are 16 sampling points in one cycle of 1 MHz free 
running frequency. When input is zero, NCO has to generate output equal to free 
running frequency. Since there are 16 sampling points in one cycle of free running 
frequency, so the offset must be 1/16. The greater input will produce greater 
frequency, and vice versa. 
 

 
Fig. 6 Data values in one cycle of cosine ROM 

 
 

The system is a simple integrator which accumulates the input value and maps 
it into predefined cosine ROM. All 1024 values were given (file: cos.txt) to define one 
cycle of cosine signal, but we actually don’t need to use all of these values. Since one 
cycle can be divided to four quarter, we only need to define the first quarter with 257 
values. The remains quarters are duplicated form the first quarter, where the opposite 
sign is applied to second and third quarter. Illustration is shown in Fig 6. 
 
Summary of operation: 
 

• input D2 and offset are added, note that signed extension form <12,-6,t> to 
<18,0,u>. 

Z-1

<12,-6,t> 

<8,0,t> <10,0,u>
COSINE
ROM 

Offset= 
1/16 

<18,0,u> 

1st quarter 2nd quarter 3rd quarter 4th quarter 

257 values of cosROM 

Assume i is output data accumulator (ROM’s address), 
for 0 ≤ i ≤ 256  cosrom(i) 
for 256 < i ≤ 512  -cosrom(512-i) 
for 512 < i ≤ 768  -cosrom(i-512) 
for 768 < i ≤ 1023 cosrom(1024-i)
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• the addition result then accumulated by modulo accumulator, then we take 10 

most bits as ROM address. 
 

• Address will be mapped to data values in ROM. 
 

 
 

2.4 FIR Filter 
 

The last stage of the receiver system is to perform signal shaping. Here we use 
16 tap Finite Impulse Response (FIR) filter to perform digital low pass filter. This 
filter is essentially average filter since its output is equal to the average value of its 
input over the last n-tap samples, where n is number of tap used [4]. This 
configuration needs 16 coefficients, but simplification is taken by assuming all of the 
coefficients are the same, 1/16. In reality 1/16 multiply can be implemented by just 4 
bit right shift operation. Then no multiplier is required. 
 

 
Fig. 7 Block diagram of FIR filter 

 
 

3. Functional Explanation 
 

Digital PLL system is composed of three basic parts: (1) Phase Detector (PD), (2) 
Loop filter, (3) Numerical-controlled oscillator (NCO). The complete block diagram 
of the All Digital FM receiver circuit is shown in Fig. 8. 

With no signal input applied to the system. The NCO control voltage  is 
equal to zero. The NCO operates at a set frequency, f

( )dV n
o (or the equivalent radian 

frequency, oω ) which is known as the free running frequency. When an input signal is 
applied to the system, the phase detector compares the phase and the frequency of the 
input with the NCO frequency and generates an error voltage that is related to 
the phase and the frequency difference between the two signals.  

( )eV n
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Fig. 8 Complete block diagram of All Digital FM Receiver system 

 
 

This error voltage is then filtered, amplified by factor of A = 1/1024, and 
applied to the control terminal of the NCO. In this manner, the control voltage  
forces the NCO frequency to vary in a direction that reduces the frequency difference 
between 

( )dV n

oω  and the input signal. If the input frequency iω  is sufficiently close to oω , 
the feedback nature of the PLL causes the NCO to synchronize or lock with the 
incoming signal. Once in lock, the NCO frequency is identical to the input signal 
except for a finite phase difference. 

This net phase difference of eθ  where 
 

e i oθ θ θ= −       (5) 
 
is necessary to generate the corrective error voltage V  to shift the NCO frequency 
from its free-running value to the input signal frequency 

( )d n

iω  and thus keep the PLL in 
lock. This self-correcting ability of the system also allows the PLL to track the 
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frequency changes of the input signal once it is locked, hence it can be act as FM 
demodulator in receiver system.  

Another means of describing the operation of the PLL is to observe that the 
phase detector is in actuality a multiplier circuit that mixes the input signal with the 
NCO signal. This mix produces the sum and difference frequencies ( )i oω ω±   shown 
in (3). When the loop is in lock, the NCO duplicates the input frequency so that the 
difference frequency component ( )i oω ω−  is zero; hence, the output of the phase 
comparator contains only a DC component. The loop filter removes the sum 
frequency component ( )i oω ω+  but passes the DC component which is then 
amplified and fed back to the NCO. 

The single most important point to realize when designing with the PLL is that 
it is a feedback system and, hence, is characterized mathematically by the same 
equations that apply to other, more conventional feedback control systems [5]. 
Mathematical model of the all digital PLL system can be derived to analyze the 
transient and steady state response. The block diagram of the all digital PLL system in 
z domain (discrete time) and its transformation in s domain (continuous time) is 
shown in Fig. 9. 
 

 
Fig. 9 Block diagram of PLL system in analyzing transient response 

 
 

Since a physical control system involves energy storage, the output of the 
system, when subjected to an input, cannot follow the input immediately but exhibits 
a transient response before a steady state can be reached [3].  

The transfer function of the system is 
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Hence, the PLL system is a second order system. In the test for stability we subjected 
the system with test signal representing a unit step of frequency at constant phase, this 
test signal correspond with actual input signal which is a FM modulated signal [5]. 
 Using MATLAB, we can plot unit step response curve for the system as 
shown in Fig. 10. We see that the system is stable with overshoots at the transient 
state. 
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Fig. 10 Unit step response for PLL system used in FM receiver system 

 
 

4. Critical Path Speed and Circuit Area 
 

Design is synthesized with Xilinx Synthesize Tool (XST), here we use Virtex2 
technology with xc2v2000ff896 device and -6 of speed grade.  
 

• Unit delay 
 

The unit speed from synthesizing of 50 input XOR gate (see Appendix 
for details) give us the result 6.967 ns total delay and 5 levels, then unit delay 
is 6.967/5 = 1.393 ns. 

 
• Unit area 

 
The unit area from synthesizing of 50 input XOR gate (see Appendix 

for details)  give us the result 102 total area gate count and utilize 17 cells, 
then unit area is 102/17 = 6. 

 
Here is the synthesis result of critical path speed, 
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Timing Summary: 
--------------- 
Speed Grade: -6 
 
   Minimum period: 8.781ns (Maximum Frequency: 113.889MHz) 
   Minimum input arrival time before clock: 1.329ns 
   Maximum output required time after clock: 4.575ns 
   Maximum combinational path delay: No path found 
 
Timing Detail: 
-------------- 
All values displayed in nanoseconds (ns) 
 
------------------------------------------------------------------------- 
Timing constraint: Default period analysis for Clock 'clk' 
Delay:               8.781ns (Levels of Logic = 12) 
  Source:            I2_dtemp1_4 (FF) 
  Destination:       I2_dout_2 (FF) 
  Source Clock:      clk rising 
  Destination Clock: clk rising 
 
  Data Path: I2_dtemp1_4 to I2_dout_2 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     FDC:C->Q             12   0.449   0.688  I2_dtemp1_4 (I2_dtemp1_4) 
     LUT2_D:I0->LO         1   0.347   0.100  I2_Ker240621 (N65860) 
     LUT4:I3->O            5   0.347   0.569  I2_Ker249151 (I2_N24917) 
     LUT4:I3->O            2   0.347   0.518  I2_Ker2252582 (CHOICE4276) 
     LUT3:I0->O            1   0.347   0.000  I2_Ker2252593_G (N65481) 
     MUXF5:I1->O           1   0.345   0.383  I2_Ker2252593 (CHOICE4278) 
     LUT4:I0->O            1   0.347   0.382  I2_Ker22525105 (CHOICE4279) 
     LUT4_L:I3->LO         1   0.347   0.100  I2_Ker22525154 (CHOICE4291) 
     LUT2:I1->O            2   0.347   0.519  I2_Ker22525164 (I2_N22527) 
     LUT4_L:I3->LO         1   0.347   0.100  I2_Ker22312138 (CHOICE4400) 
     LUT4:I2->O            2   0.347   0.518  I2_Ker22312162 (I2_N22314) 
     LUT4:I3->O            1   0.347   0.000  I2__n0008<2>323_G (N65471) 
     MUXF5:I1->O           1   0.345   0.000  I2__n0008<2>323 
(I2__n0008<2>) 
     FDC:D                     0.293          I2_dout_2 
    ---------------------------------------- 
    Total                      8.781ns (4.902ns logic, 3.878ns route) 
                                       (55.8% logic, 44.2% route) 
 
------------------------------------------------------------------------- 

 
We conclude that the normalized combinational path delay is 8.781/1.393 = 6.304 
unit delay 
 
While the synthesized result for circuit area is, 
 
 
Design Summary 
-------------- 
Number of errors:      0 
Number of warnings:    8 
Logic Utilization: 
  Number of Slice Flip Flops:         446 out of  21,504    2% 
  Number of 4 input LUTs:           1,226 out of  21,504    5% 
Logic Distribution: 
  Number of occupied Slices:          834 out of  10,752    7% 
  Number of Slices containing only related logic:     834 out of     834  100% 
  Number of Slices containing unrelated logic:          0 out of     834    0% 
Total Number 4 input LUTs:          1,248 out of  21,504    5% 
  Number used as logic:             1,226 
  Number used as a route-thru:         22 
  Number of bonded IOBs:               22 out of     624    3% 
    IOB Flip Flops:                    20 
  Number of GCLKs:                      1 out of      16    6% 
 
Total equivalent gate count for design:  13,835 
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We conclude that the normalized circuit area is 13,835/6 = 2,306 gates 
 
 

5. Appealing Point and Originality 
 

The architecture used in this design has been explained in [7]. This architecture is 
good. We did something different by optimizing phase detector component to achieve 
smaller circuit area, and we also modify NCO component. 

We optimized the multiplication operation used in the phase detector component. 
We used Booth’s algorithm to replace arithmetic multiplier with some adders. This 
modification reduces the number of gate for this component from 689 gates decrease 
to 453 gates. 

For NCO component, we only need 257x8-bit ROM rather than 1024x8-bit ROM 
since one cycle of cosine wave can be divided into four quarter as explained before. 
Although this modification uses smaller size of ROM, we can’t avoid using more 
registers and several comparators, but it’s interesting to work with.   

We attempted to find another digital PLL architecture like one which was 
proposed in [8]. We realize that it is also good and easy to build, but it needs high 
frequency of clock to drive the counters. Finally we try to implement our design into 
FPGA, and then we need to do real measurement. The result gives us the correct 
demodulated output wave as expected.  
 

6. HDL Codes 
 

HDL codes for each component, top level design, and the test bench can be 
observed as follows, 
 

6.1 Multiplier (Phase Detector) 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE IEEE.numeric_std.ALL; 
 
ENTITY multiplier IS 
port (CLK    : in std_logic; 
      RESET  : in std_logic; 
      input1   : in std_logic_vector(7 downto 0); 
      input2   : in signed(7 downto 0); 
      output   : out signed(7 downto 0) 
      ); 
END multiplier ; 
 
ARCHITECTURE behavior OF multiplier IS 
 
signal out_temp : signed(15 downto 0); 
signal input1_buf : signed(15 downto 0); 
signal part0,part1,part2,part3,part4, 
       part5,part6,part7 : signed(15 downto 0); 
 
begin 
process(CLK, RESET) 
begin 
 if (RESET='1') then 
   out_temp <= (others => '0'); 

 
 
 
 
 
 
-- Declarations 
 
-- input1 as multiplicand <8,0,t> 
-- input2 as multiplier <8,0,t> 
-- product <8,0,t> 
 
 
 
 
 
-- output buffer 
-- multiplicand buffer 
-- 8 partials product 
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   output <= (others => '0'); 
   input1_buf <= (others => '0'); 
   part0 <= (others => '0'); 
   part1 <= (others => '0'); 
   part2 <= (others => '0'); 
   part3 <= (others => '0'); 
   part4 <= (others => '0'); 
   part5 <= (others => '0'); 
   part6 <= (others => '0'); 
   part7 <= (others => '0'); 
  elsif rising_edge(CLK) then 
    input1_buf <= input1(7)&input1(7)&input1(7)& 
                  input1(7)&input1(7)&input1(7)& 
                  input1(7)&input1(7)& 
                  signed(input1); 
     if (input2(0)='1') then 
     part0 <= -(input1_buf);  
     else  
     part0 <= (others => '0'); 
     end if; 
 
     if (input2(1)='1') then 
     if (input2(0)='1') then 
     part1 <= (others => '0'); 
     else 
     part1 <= -(input1_buf);  
     end if; 
     else 
     if (input2(0)='1') then 
     part1 <= input1_buf;  
     else 
     part1 <= (others => '0'); 
     end if; 
     end if; 
 
     if (input2(2)='1') then 
     if (input2(1)='1') then 
     part2 <= (others => '0'); 
     else 
     part2 <= -(input1_buf);  
     end if; 
     else 
     if (input2(1)='1') then 
     part2 <= input1_buf;  
     else 
     part2 <= (others => '0'); 
     end if; 
     end if; 
        
     if (input2(3)='1') then 
     if (input2(2)='1') then 
     part3 <= (others => '0'); 
     else 
     part3 <= -(input1_buf);  
     end if; 
     else 
     if (input2(2)='1') then 
     part3 <= input1_buf;  
     else 
     part3 <= (others => '0'); 
     end if; 
     end if; 
      
     if (input2(4)='1') then 
     if (input2(3)='1') then 
     part4 <= (others => '0'); 
     else 
     part4 <= -(input1_buf);  
     end if; 
     else 
     if (input2(3)='1') then 
     part4 <= input1_buf;  
     else 
     part4 <= (others => '0'); 
     end if; 
     end if; 

 
 
 
 
 
 
 
 
 
 
 
 
-- input buffering with sign 
extension 
-- start Booth’s algorithm 
-- check first bit of multiplier 
-- subtract (add 2’s complement) 
 
-- no change 
 
 
-- check second bit of multiplier 
-- check previous bit 
-- no change 
 
-- subtract (add 2’s complement) 
 
 
 
-- add 
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     if (input2(5)='1') then 
     if (input2(4)='1') then 
     part5 <= (others => '0'); 
     else 
     part5 <= -(input1_buf);  
     end if; 
     else 
     if (input2(4)='1') then 
     part5 <= input1_buf;  
     else 
     part5 <= (others => '0'); 
     end if; 
     end if; 
      
     if (input2(6)='1') then 
     if (input2(5)='1') then 
     part6 <= (others => '0'); 
     else 
     part6 <= -(input1_buf);  
     end if; 
     else 
     if (input2(5)='1') then 
     part6 <= input1_buf;  
     else 
     part6 <= (others => '0'); 
     end if; 
     end if; 
      
     if (input2(7)='1') then 
     if (input2(6)='1') then 
     part7 <= (others => '0'); 
     else 
     part7 <= -(input1_buf);  
     end if; 
     else 
     if (input2(6)='1') then 
     part7 <= input1_buf;  
     else 
     part7 <= (others => '0'); 
     end if; 
     end if; 
   out_temp <= part0+(part1(14 downto 0)&'0')+ 
               (part2(13 downto 0)&"00")+ 
               (part3(12 downto 0)&"000")+ 
               (part4(11 downto 0)&"0000")+ 
               (part5(10 downto 0)&"00000")+ 
               (part6(9 downto 0)&"000000")+ 
               (part7(8 downto 0)&"0000000"); 
   output <= out_temp(15 downto 8);  
  end if; 
end process; 
END behavior; 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
-- summing partials product 
 
 
 
 
 
 
-- crop 8 most bits as final 
product 

 
 

6.2 Loop Filter 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE IEEE.numeric_std.ALL; 
 
ENTITY loop_filter IS 
port ( CLK   : in std_logic; 
 RESET : in std_logic; 
 C     : in signed(7 downto 0); 
 D1    : out signed(11 downto 0); 
 D2    : out signed(11 downto 0) 
 ); 
END loop_filter  ; 
 

 
 
 
 
 
-- Declarations 
 
 
-- input <8,0,t> from multiplier 
-- output <12,4,t> to FIR 
-- output <12,-6,t> to NCO 
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ARCHITECTURE behavior OF loop_filter  IS 
 
signal E     : signed(11 downto 0); 
signal dtemp : signed(11 downto 0); 
 
begin 
process(CLK, RESET) 
begin 
 if (RESET='1') then 
  D1 <= (others => '0'); 
  D2 <= (others => '0'); 
  E <= (others => '0'); 
  dtemp <= (others => '0'); 
 elsif rising_edge(CLK) then 
  dtemp <=  (C(7)&C(7)&C(7)&C&'0') + dtemp - E; 
  E <= dtemp(11)&dtemp(11)&dtemp(11)&dtemp(11)& 
       dtemp(11 downto 4); 
  D1 <= dtemp;  
  D2 <= dtemp(11 downto 4)&”0000”; 
 end if; 
end process; 
END behavior; 

 
 
-- (Atemp x 1/16)  
-- output buffer 
 
 
 
 
 
-- 15/16 = (1 – 1/16),  
-- hence, Atemp x 15/16 = Atemp–
(Atemp x 1/16) = Atemp – E 
 
 
-- here we scaled input to get 
better result 
-- 1/16 multiply is 4 bit right 
shift  operation 
-- 1/1024 multiply is 10 bit right 
shift operation 
-- D2 = D1 x 1/1024 
-- note that to get D2, D1 must be 
changed to 18 bit then do the 10 
bit shift right operation and then 
change it to <12,-6,t> format. 
 

 
 

6.3 Numerical Controlled Oscillator (NCO) 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE IEEE.numeric_std.ALL; 
 
ENTITY nco IS 
port(clk   : in  std_logic; 
     reset : in  std_logic; 
     din   : in  signed(11 downto 0);   
     dout  : out signed(7 downto 0) 
     ); 
END nco ; 
 
ARCHITECTURE behavior OF nco IS 
type vectype is array (0 to 256) of  
     signed(7 downto 0); 
constant cosrom  : vectype := ( 
0 => "01111111", 
1 => "01111111", 
2 => "01111111", 
3 => "01111111", 
4 => "01111111", 
5 => "01111111", 
6 => "01111111", 
7 => "01111111", 
8 => "01111111", 
9 => "01111111", 
10 => "01111111", 
11 => "01111111", 
12 => "01111111", 
13 => "01111111", 
14 => "01111111", 
15 => "01111111", 
16 => "01111111", 
17 => "01111111", 
18 => "01111111", 
19 => "01111111", 
20 => "01111111", 
21 => "01111111", 
22 => "01111111", 
23 => "01111111", 
24 => "01111111", 

 
 
 
 
 
 
-- Declarations 
 
-- input <12,-6,t> from loop 
filter 
-- output data from cosine ROM 
<8,0,t> 
 
 
-- using first quarter data (257) 
values of file: cos.txt 
-- cosine ROM 
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25 => "01111110", 
26 => "01111110", 
27 => "01111110", 
28 => "01111110", 
29 => "01111110", 
30 => "01111110", 
31 => "01111110", 
32 => "01111110", 
33 => "01111101", 
34 => "01111101", 
35 => "01111101", 
36 => "01111101", 
37 => "01111101", 
38 => "01111101", 
39 => "01111100", 
40 => "01111100", 
41 => "01111100", 
42 => "01111100", 
43 => "01111100", 
44 => "01111011", 
45 => "01111011", 
46 => "01111011", 
47 => "01111011", 
48 => "01111010", 
49 => "01111010", 
50 => "01111010", 
51 => "01111010", 
52 => "01111010", 
53 => "01111001", 
54 => "01111001", 
55 => "01111001", 
56 => "01111001", 
57 => "01111000", 
58 => "01111000", 
59 => "01111000", 
60 => "01110111", 
61 => "01110111", 
62 => "01110111", 
63 => "01110111", 
64 => "01110110", 
65 => "01110110", 
66 => "01110110", 
67 => "01110101", 
68 => "01110101", 
69 => "01110101", 
70 => "01110100", 
71 => "01110100", 
72 => "01110100", 
73 => "01110011", 
74 => "01110011", 
75 => "01110011", 
76 => "01110010", 
77 => "01110010", 
78 => "01110010", 
79 => "01110001", 
80 => "01110001", 
81 => "01110001", 
82 => "01110000", 
83 => "01110000", 
84 => "01101111", 
85 => "01101111", 
86 => "01101111", 
87 => "01101110", 
88 => "01101110", 
89 => "01101101", 
90 => "01101101", 
91 => "01101101", 
92 => "01101100", 
93 => "01101100", 
94 => "01101011", 
95 => "01101011", 
96 => "01101010", 
97 => "01101010", 
98 => "01101010", 
99 => "01101001", 
100 => "01101001", 
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101 => "01101000", 
102 => "01101000", 
103 => "01100111", 
104 => "01100111", 
105 => "01100110", 
106 => "01100110", 
107 => "01100101", 
108 => "01100101", 
109 => "01100100", 
110 => "01100100", 
111 => "01100011", 
112 => "01100011", 
113 => "01100010", 
114 => "01100010", 
115 => "01100001", 
116 => "01100001", 
117 => "01100000", 
118 => "01100000", 
119 => "01011111", 
120 => "01011111", 
121 => "01011110", 
122 => "01011110", 
123 => "01011101", 
124 => "01011101", 
125 => "01011100", 
126 => "01011100", 
127 => "01011011", 
128 => "01011011", 
129 => "01011010", 
130 => "01011001", 
131 => "01011001", 
132 => "01011000", 
133 => "01011000", 
134 => "01010111", 
135 => "01010111", 
136 => "01010110", 
137 => "01010101", 
138 => "01010101", 
139 => "01010100", 
140 => "01010100", 
141 => "01010011", 
142 => "01010010", 
143 => "01010010", 
144 => "01010001", 
145 => "01010001", 
146 => "01010000", 
147 => "01001111", 
148 => "01001111", 
149 => "01001110", 
150 => "01001110", 
151 => "01001101", 
152 => "01001100", 
153 => "01001100", 
154 => "01001011", 
155 => "01001010", 
156 => "01001010", 
157 => "01001001", 
158 => "01001000", 
159 => "01001000", 
160 => "01000111", 
161 => "01000111", 
162 => "01000110", 
163 => "01000101", 
164 => "01000101", 
165 => "01000100", 
166 => "01000011", 
167 => "01000011", 
168 => "01000010", 
169 => "01000001", 
170 => "01000001", 
171 => "01000000", 
172 => "00111111", 
173 => "00111110", 
174 => "00111110", 
175 => "00111101", 
176 => "00111100", 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 16



177 => "00111100", 
178 => "00111011", 
179 => "00111010", 
180 => "00111010", 
181 => "00111001", 
182 => "00111000", 
183 => "00111000", 
184 => "00110111", 
185 => "00110110", 
186 => "00110101", 
187 => "00110101", 
188 => "00110100", 
189 => "00110011", 
190 => "00110011", 
191 => "00110010", 
192 => "00110001", 
193 => "00110000", 
194 => "00110000", 
195 => "00101111", 
196 => "00101110", 
197 => "00101101", 
198 => "00101101", 
199 => "00101100", 
200 => "00101011", 
201 => "00101010", 
202 => "00101010", 
203 => "00101001", 
204 => "00101000", 
205 => "00100111", 
206 => "00100111", 
207 => "00100110", 
208 => "00100101", 
209 => "00100100", 
210 => "00100100", 
211 => "00100011", 
212 => "00100010", 
213 => "00100001", 
214 => "00100001", 
215 => "00100000", 
216 => "00011111", 
217 => "00011110", 
218 => "00011110", 
219 => "00011101", 
220 => "00011100", 
221 => "00011011", 
222 => "00011011", 
223 => "00011010", 
224 => "00011001", 
225 => "00011000", 
226 => "00011000", 
227 => "00010111", 
228 => "00010110", 
229 => "00010101", 
230 => "00010100", 
231 => "00010100", 
232 => "00010011", 
233 => "00010010", 
234 => "00010001", 
235 => "00010001", 
236 => "00010000", 
237 => "00001111", 
238 => "00001110", 
239 => "00001101", 
240 => "00001101", 
241 => "00001100", 
242 => "00001011", 
243 => "00001010", 
244 => "00001010", 
245 => "00001001", 
246 => "00001000", 
247 => "00000111", 
248 => "00000110", 
249 => "00000110", 
250 => "00000101", 
251 => "00000100", 
252 => "00000011", 
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253 => "00000010", 
254 => "00000010", 
255 => "00000001", 
256 => "00000000"); 
signal dtemp : unsigned(17 downto 0); 
signal dtemp1 : integer; 
signal din_buf : signed(17 downto 0); 
constant offset : unsigned(17 downto 0) := 
"000100000000000000"; 
begin 
process(CLK, RESET) 
begin 
 if (RESET='1') then 
  dout <= (others => '0'); 
  din_buf <= (others => '0'); 
  dtemp <= (others => '0'); 
  dtemp1 <= 0; 
 elsif rising_edge(CLK) then 
  din_buf <= din(11)& din(11)& din(11)& din(11)& 
din(11)& din(11)&din; 
  dtemp <= dtemp + unsigned(din_buf) + offset; 
  dtemp1 <= to_integer(dtemp(17 downto 8)); 
  if (dtemp1 >= 0) and (dtemp1 < 257) then 
   dout <= cosrom(dtemp1); 
  elsif (dtemp1 >= 257) and (dtemp1 < 513) then 
   dout <= -cosrom(512-dtemp1); 
  elsif (dtemp1 >= 513) and (dtemp1 < 769) then 
   dout <= -cosrom(dtemp1-512); 
  else 
   dout <= cosrom(1024-dtemp1); 
  end if; 
 end if; 
end process; 
END behavior; 
 

 
 
 
 
-- modulo accumulator buffer 
 
 
-- offset = 1/16 <18,0,u> 
 
 
 
 
 
 
 
 
 
 
 
-- sign extension 
-- accumulator 
-- mapping input to data values 
 
Assume i is output data 
accumulator, 
for 0 ≤ i ≤ 256  cosrom(i) 
for 256 < i ≤ 512  -cosrom(512-i) 
for 512 < i ≤ 768  -cosrom(i-512) 
for 768 < i ≤ 1023  cosrom(1024-
i) 
 

 
 

6.4 FIR Filter 
 
 
LIBRARY ieee; 
USE IEEE.std_logic_1164.all; 
USE IEEE.numeric_std.ALL; 
 
entity FIR is 
port(clock    : in std_logic; 
     reset    : in std_logic;  
     data_in  : in signed(11 downto 0); 
     data_out : out std_logic_vector(11 downto 0) 
     ); 
end FIR; 
 
architecture behavior of FIR is 
signal d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10, 
       d11,d12,d13,d14,d15 : signed(15 downto 0); 
signal sum : signed(15 downto 0); 
begin 
process(clock,reset) 
begin 
   if (reset = '1') then 
 d0 <= (others => '0'); 
 d1 <= (others => '0'); 
 d2 <= (others => '0'); 
 d3 <= (others => '0'); 
 d4 <= (others => '0'); 
 d5 <= (others => '0'); 
 d6 <= (others => '0'); 
 d7 <= (others => '0'); 
 d8 <= (others => '0'); 
 d9 <= (others => '0'); 
 d10 <= (others => '0'); 
 d11 <= (others => '0'); 

 
 
 
 
 
 
-- declaration 
 
-- input 12 bit 
-- ouput 12 bit 
 
 
 
 
 
-- 16 tap FIR 
-- buffer 
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 d12 <= (others => '0'); 
 d13 <= (others => '0'); 
 d14 <= (others => '0'); 
 d15 <= (others => '0'); 
 sum <= (others => '0'); 
 data_out <= (others => '0'); 
   ELSIF rising_edge(clock) THEN 
 d0 <= data_in(11)&data_in(11)& 
              data_in(11)&data_in(11)&data_in; 
 d1 <= d0; 
 d2 <= d1; 
    d3 <= d2; 
 d4 <= d3; 
 d5 <= d4; 
 d6 <= d5; 
 d7 <= d6; 
 d8 <= d7; 
 d9 <= d8; 
 d10 <= d9; 
 d11 <= d10; 
 d12 <= d11; 
 d13 <= d12; 
 d14 <= d13; 
 d15 <= d14; 
 sum <= (d0+d1+d2+d3+d4+d5+d6+d7+d8+d9+ 
               d10+d11+d12+d13+d14+d15) srl 4;   
 data_out <= std_logic_vector(sum(11 downto 0)); 
 end if; 
end process; 
end behavior; 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
-- 1/16 multiply is 4 bit right 
shift operation 
 
 
 

 
 

6.5 Circuit (top level design) 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE IEEE.numeric_std.ALL; 
 
ENTITY circuit IS 
PORT(clk   : IN std_logic; 
     reset : IN std_logic; 
     fmin  : IN std_logic_vector(7 downto 0); 
     dmout : OUT std_logic_vector (11 DOWNTO 0) 
   ); 
END circuit ; 
 
ARCHITECTURE behavior OF circuit IS 
    
   SIGNAL d1     : signed(11 DOWNTO 0); 
   SIGNAL d2     : signed(11 DOWNTO 0); 
   SIGNAL dout   : signed(7 DOWNTO 0); 
   SIGNAL output : signed(7 DOWNTO 0); 
     
   COMPONENT multiplier 
PORT ( clk    : IN std_logic ; 
       reset  : IN std_logic ;       
       input1 : IN std_logic_vector (7 DOWNTO 0); 
       input2 : IN signed (7 DOWNTO 0); 
       output : OUT signed (7 DOWNTO 0) 
     ); 
END COMPONENT; 
COMPONENT fir 
PORT ( clock    : IN std_logic ; 
       reset    : IN std_logic ; 
       data_in  : IN signed (11 DOWNTO 0); 
    data_out : OUT std_logic_vector (11 DOWNTO 0) 
   ); 
END COMPONENT; 
COMPONENT loop_filter 
PORT (clk   : IN     std_logic ; 

 
 
 
 
 
 
-- declaration 
 
-- modulated data input 
-- demodulated data output 
 
 
 
-- Architecture declarations 
-- Internal signal declarations 
 
 
 
 
 
-- Component Declarations 
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      reset : IN     std_logic ; 
      c     : IN     signed (7 DOWNTO 0); 
      d1    : OUT    signed (11 DOWNTO 0); 
      d2    : OUT    signed (11 DOWNTO 0) 
   ); 
END COMPONENT; 
COMPONENT nco 
PORT (clk   : IN     std_logic ; 
      reset : IN     std_logic ; 
      din   : IN     signed (11 DOWNTO 0); 
      dout  : OUT    signed (7 DOWNTO 0) 
   ); 
END COMPONENT; 
 
BEGIN 
      I1 : multiplier 
      PORT MAP ( 
    clk => clk, 
         reset => reset, 
         input1 => fmin, 
         input2 => dout, 
         output => output 
      ); 
   I4 : fir 
      PORT MAP ( 
         clock    => clk, 
         reset    => reset, 
         data_in  => d1, 
         data_out => dmout 
      ); 
   I3 : loop_filter 
      PORT MAP ( 
         clk   => clk, 
         reset => reset, 
         c     => output, 
         d1    => d1, 
         d2    => d2 
      ); 
   I2 : nco 
      PORT MAP ( 
         clk   => clk, 
         reset => reset, 
         din   => d2, 
         dout  => dout 
      );    
   END behavior; 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
-- Instance port mappings. 
 
 

 
 

6.6 Test Bench 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE IEEE.numeric_std.ALL; 
USE std.textio.ALL; 
 
ENTITY circuit_tb IS 
END circuit_tb; 
 
ARCHITECTURE behavior OF circuit_tb IS  
 
file vectors: text open read_mode is "fm.txt"; 
 
COMPONENT circuit 
PORT( clk : IN std_logic; 
      reset : IN std_logic; 
      fmin : IN std_logic_vector(7 downto 0);      
      dmout : OUT std_logic_vector(11 downto 0) 
    ); 
END COMPONENT; 
 

 
 
 
 
 
 
 
 
 
 
-- input read from given file: 
“fm.txt” for square modulated 
signal and “fmtri.txt” for 
triangular modulated signal 
 
-- Component Declarations 
 
 
 
 
 

 20



SIGNAL clk : std_logic := '0' ; 
SIGNAL reset : std_logic := '1';  
SIGNAL fmin : std_logic_vector(7 downto 0); 
SIGNAL dmout : std_logic_vector(11 downto 0); 
constant clkperiod : time := 62.5 ns; 
 
BEGIN 
 uut: circuit PORT MAP( 
  clk => clk, 
  reset => reset, 
  fmin => fmin, 
  dmout => dmout 
      ); 
 
    RESET_GEN: process 
    begin 
        LOOP1: for N in 0 to 3 loop 
           wait until falling_edge(CLK); 
        end loop LOOP1; 
        RESET <= '0' ; 
    end process RESET_GEN; 
 
clk <= not clk after clkperiod / 2; 
 
process 
variable vectorline : line; 
variable fmin_var : bit_vector(7 downto 0); 
begin 
while not endfile(vectors) loop 
if (reset = '1') then 
fmin <= (others => '0'); 
else 
readline(vectors, vectorline); 
read(vectorline, fmin_var); 
fmin <= to_stdlogicvector(fmin_var); 
end if; 
wait for clkperiod; 
end loop; 
end process;  
 
END; 

 
-- Internal signal declarations 
 
 
-- system clock frequency = 16 MHz 
 
 
-- Instance port mappings. 
 
 
 
 
 
 
 
-- reset signal generator 
 
 
 
 
 
 
 
-- clock signal generator 
 
-- read file vector operation. 

 
 

7. Simulation Waveform 
 

Fig. 11 shows the simulation waveform for all digital FM receiver circuit 
subjected to square wave modulated data, while Fig. 12 shows the simulation 
waveform for All Digital FM Receiver circuit subjected to triangular wave modulated 
data. The first row shows the FM modulated waveform according to the sending data. 
The second row is NCO output and the third row is phase detector (multiplier) output. 
The fourth row and the fifth row are the accumulator output and the demodulated 
output, respectively. At the initial simulation phase, the demodulated output 
overshoots since the phase synchronization is in convergence phase and then system 
is stable. 

From Fig. 11 and Fig. 12, designed FM receiver circuit successfully demodulates 
input signal back to the original signal. 
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Fig. 11 Simulation waveform of the circuit, subjected to square wave modulated input signal 
 
 

Fig. 12 Simulation waveform of the circuit, subjected to triangular wave modulated input signal 
 
 

8. FPGA Implementation 
 

We implement the all digital FM receiver circuit designed into FPGA. Here we 
are using Virtex2 device from Xilinx with XC2V2000 technology and ff896 package. 
The chip graphic is shown in Fig.13 
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Fig. 13 Chip graphic for the design 
 
 

ChipScope Pro 6.3i provides an integrated logic analyzer used to capture data 
in the designed circuit. After design is downloaded to FPGA board, ChipScope Pro 
will trigger input data and capture the output data via parallel cable in JTAG 
Boundary Scan mode as shown in Fig. 14. Captured data is in the listing form of 12-
bit binary number as shown in Fig. 15. We can adjust how many samples needed to be 
captured; here we captured 1024 samples output data, then we plot it by ModelSim to 
obtain the actual demodulated signal view as shown in Fig.16 
 

 
Fig. 14 Capturing output data via parallel cable in JTAG mode 

DC power 
cable 

JTAG mode 
Configuration cable Virtex2 

FPGA 
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Fig. 15 Captured data and waveform of the output in ChipScope 

 
 

(a) 

(b) 
Fig. 16 Actual demodulated data 
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9. Closing 
 

VHDL and FPGA are always attracting us in our VLSI System Design class. We 
are enthusiast in joining this program. This subject of study is new for us as 
beginners, now we can learn basic principle of digital FM receiver and get the 
opportunity to make our design, we enjoy it. We've found this a great subject to work 
in because we've gained knowledge about the state of the VLSI Design, its different 
sectors and the links that exist within it and between other global electronics study. 
 
 
 
 

誰にもまちがいはある、だからエンピツにも消しゴムがついている。 

 
 

Reference: 
 
[1] “Modeling PLL,” in Integrated Circuits Application Note AN178 Philips 

Semiconductors, 1988.  
[2] Douglas J. Smith, “HDL Chip Design,” Doone Publication, 1996 
[3] John G. Proakis, Dimitri G. Manolakis, “Digital Signal Processing,” Prentice 

Hall, 1996. 
[4] Katsuhiko Ogata, “Modern Control Engineering,” Prentice Hall, 2002. 
[5] Naresh K. Sinha, “Linear Systems,” John Wiley and Sons. Inc, 1991. 
[6]  P.E. Allen, “All Digital Phase Locked Loop," in Lecture Note CMOS Phase 

Locked Loops, 2003. 
[7] Roland E. Best, “Phase Locked Loop, Theory, Design, and Applications,” 

McGraw – Hill, 2003. 
[8] Website : http://bw-www.ie.u-ryukyu.ac.jp/~wada/design05/spec_e.html 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 25

http://bw-www.ie.u-ryukyu.ac.jp/~wada/design05/spec_e.html


 
 
 
 
 
 
 
 

Appendix: 
 
Synthesis result of 50 input XOR gate for computing unit delay 
 
 
Timing Detail: 
-------------- 
All values displayed in nanoseconds (ns) 
 
------------------------------------------------------------------------- 
Timing constraint: Default path analysis 
Delay:               6.967ns (Levels of Logic = 5) 
  Source:            A<10> (PAD) 
  Destination:       Y (PAD) 
 
  Data Path: A<10> to Y 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     IBUF:I->O             1   0.653   0.383  A_10_IBUF (A_10_IBUF) 
     LUT4:I0->O            1   0.347   0.383  Mxor_Y_inst_lut4_01 (Mxor_Y__net0) 
     LUT4:I0->O            1   0.347   0.383  Mxor_Y_inst_lut4_121 (Mxor_Y__net14) 
     LUT4:I0->O            1   0.347   0.383  Mxor_Y_inst_lut4_151 (Y_OBUF) 
     OBUF:I->O                 3.743          Y_OBUF (Y) 
    ---------------------------------------- 
    Total                      6.967ns (5.437ns logic, 1.530ns route) 
                                       (78.0% logic, 22.0% route) 
 

 
 
Synthesis result of 50 input XOR gate for computing unit area 
 
 
Design Summary 
-------------- 
Number of errors:      0 
Number of warnings:    0 
Logic Utilization: 
  Number of 4 input LUTs:              17 out of  21,504    1% 
Logic Distribution: 
  Number of occupied Slices:           13 out of  10,752    1% 
  Number of Slices containing only related logic:      13 out of      13  100% 
  Number of Slices containing unrelated logic:          0 out of      13    0% 
        *See NOTES below for an explanation of the effects of unrelated logic 
Total Number 4 input LUTs:             17 out of  21,504    1% 
 
  Number of bonded IOBs:               51 out of     624    8% 
 
Total equivalent gate count for design:  102 
Additional JTAG gate count for IOBs:  2,448 
Peak Memory Usage:  100 MB 
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