1145 lines
40 KiB
VHDL
1145 lines
40 KiB
VHDL
-- --------------------------------------------------------------------
|
|
--
|
|
-- Copyright © 2008 by IEEE.
|
|
--
|
|
-- This source file is an essential part of IEEE Std 1076-2008,
|
|
-- IEEE Standard VHDL Language Reference Manual. Verbatim copies of this
|
|
-- source file may be used and distributed without restriction.
|
|
-- Modifications to this source file as permitted in IEEE Std 1076-2008
|
|
-- may also be made and distributed. All other uses require permission
|
|
-- from the IEEE Standards Department(stds-ipr@ieee.org).
|
|
-- All other rights reserved.
|
|
--
|
|
-- This source file is provided on an AS IS basis. The IEEE disclaims ANY
|
|
-- WARRANTY EXPRESS OR IMPLIED INCLUDING ANY WARRANTY OF MERCHANTABILITY
|
|
-- AND FITNESS FOR USE FOR A PARTICULAR PURPOSE. The user of the source file
|
|
-- shall indemnify and hold IEEE harmless from any damages or liability
|
|
-- arising out of the use thereof.
|
|
--
|
|
-- Title : Standard VHDL Mathematical Packages
|
|
-- : (MATH_COMPLEX package declaration)
|
|
-- :
|
|
-- Library : This package shall be compiled into a library
|
|
-- : symbolically named IEEE.
|
|
-- :
|
|
-- Developers: IEEE DASC VHDL Mathematical Packages Working Group
|
|
-- :
|
|
-- Purpose : This package defines a standard for designers to use in
|
|
-- : describing VHDL models that make use of common COMPLEX
|
|
-- : constants and common COMPLEX mathematical functions and
|
|
-- : operators.
|
|
-- :
|
|
-- Limitation: The values generated by the functions in this package
|
|
-- : may vary from platform to platform, and the precision
|
|
-- : of results is only guaranteed to be the minimum required
|
|
-- : by IEEE Std 1076-2008.
|
|
-- :
|
|
-- Note : This package may be modified to include additional data
|
|
-- : required by tools, but it must in no way change the
|
|
-- : external interfaces or simulation behavior of the
|
|
-- : description. It is permissible to add comments and/or
|
|
-- : attributes to the package declarations, but not to change
|
|
-- : or delete any original lines of the package declaration.
|
|
-- : The package body may be changed only in accordance with
|
|
-- : the terms of Clause 16 of this standard.
|
|
-- :
|
|
-- --------------------------------------------------------------------
|
|
-- $Revision: 1220 $
|
|
-- $Date: 2008-04-10 17:16:09 +0930 (Thu, 10 Apr 2008) $
|
|
-- --------------------------------------------------------------------
|
|
|
|
use WORK.MATH_REAL.all;
|
|
package MATH_COMPLEX is
|
|
constant CopyRightNotice : STRING
|
|
:= "Copyright 2008 IEEE. All rights reserved.";
|
|
|
|
--
|
|
-- Type Definitions
|
|
--
|
|
type COMPLEX is
|
|
record
|
|
RE : REAL; -- Real part
|
|
IM : REAL; -- Imaginary part
|
|
end record;
|
|
|
|
subtype POSITIVE_REAL is REAL range 0.0 to REAL'high;
|
|
|
|
subtype PRINCIPAL_VALUE is REAL range -MATH_PI to MATH_PI;
|
|
|
|
type COMPLEX_POLAR is
|
|
record
|
|
MAG : POSITIVE_REAL; -- Magnitude
|
|
ARG : PRINCIPAL_VALUE; -- Angle in radians; -MATH_PI is illegal
|
|
end record;
|
|
|
|
--
|
|
-- Constant Definitions
|
|
--
|
|
constant MATH_CBASE_1 : COMPLEX := COMPLEX'(1.0, 0.0);
|
|
constant MATH_CBASE_J : COMPLEX := COMPLEX'(0.0, 1.0);
|
|
constant MATH_CZERO : COMPLEX := COMPLEX'(0.0, 0.0);
|
|
|
|
|
|
--
|
|
-- Overloaded equality and inequality operators for COMPLEX_POLAR
|
|
-- (equality and inequality operators for COMPLEX are predefined)
|
|
--
|
|
|
|
function "=" (L : in COMPLEX_POLAR; R : in COMPLEX_POLAR) return BOOLEAN;
|
|
-- Purpose:
|
|
-- Returns TRUE if L is equal to R and returns FALSE otherwise
|
|
-- Special values:
|
|
-- COMPLEX_POLAR'(0.0, X) = COMPLEX_POLAR'(0.0, Y) returns TRUE
|
|
-- regardless of the value of X and Y.
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- "="(L,R) is either TRUE or FALSE
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "/=" (L : in COMPLEX_POLAR; R : in COMPLEX_POLAR) return BOOLEAN;
|
|
-- Purpose:
|
|
-- Returns TRUE if L is not equal to R and returns FALSE
|
|
-- otherwise
|
|
-- Special values:
|
|
-- COMPLEX_POLAR'(0.0, X) /= COMPLEX_POLAR'(0.0, Y) returns
|
|
-- FALSE regardless of the value of X and Y.
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- "/="(L,R) is either TRUE or FALSE
|
|
-- Notes:
|
|
-- None
|
|
|
|
--
|
|
-- Function Declarations
|
|
--
|
|
function CMPLX(X : in REAL; Y : in REAL := 0.0) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns COMPLEX number X + iY
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- X in REAL
|
|
-- Y in REAL
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- CMPLX(X,Y) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function GET_PRINCIPAL_VALUE(X : in REAL) return PRINCIPAL_VALUE;
|
|
-- Purpose:
|
|
-- Returns principal value of angle X; X in radians
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- X in REAL
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- -MATH_PI < GET_PRINCIPAL_VALUE(X) <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function COMPLEX_TO_POLAR(Z : in COMPLEX) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value COMPLEX_POLAR of Z
|
|
-- Special values:
|
|
-- COMPLEX_TO_POLAR(MATH_CZERO) = COMPLEX_POLAR'(0.0, 0.0)
|
|
-- COMPLEX_TO_POLAR(Z) = COMPLEX_POLAR'(ABS(Z.IM),
|
|
-- SIGN(Z.IM)*MATH_PI_OVER_2) if Z.RE = 0.0
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function POLAR_TO_COMPLEX(Z : in COMPLEX_POLAR) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns COMPLEX value of Z
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- POLAR_TO_COMPLEX(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "ABS"(Z : in COMPLEX) return POSITIVE_REAL;
|
|
-- Purpose:
|
|
-- Returns absolute value (magnitude) of Z
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- ABS(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- ABS(Z) = SQRT(Z.RE*Z.RE + Z.IM*Z.IM)
|
|
|
|
function "ABS"(Z : in COMPLEX_POLAR) return POSITIVE_REAL;
|
|
-- Purpose:
|
|
-- Returns absolute value (magnitude) of Z
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- ABS(Z) >= 0.0
|
|
-- Notes:
|
|
-- ABS(Z) = Z.MAG
|
|
|
|
function ARG(Z : in COMPLEX) return PRINCIPAL_VALUE;
|
|
-- Purpose:
|
|
-- Returns argument (angle) in radians of the principal
|
|
-- value of Z
|
|
-- Special values:
|
|
-- ARG(Z) = 0.0 if Z.RE >= 0.0 and Z.IM = 0.0
|
|
-- ARG(Z) = SIGN(Z.IM)*MATH_PI_OVER_2 if Z.RE = 0.0
|
|
-- ARG(Z) = MATH_PI if Z.RE < 0.0 and Z.IM = 0.0
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- -MATH_PI < ARG(Z) <= MATH_PI
|
|
-- Notes:
|
|
-- ARG(Z) = ARCTAN(Z.IM, Z.RE)
|
|
|
|
function ARG(Z : in COMPLEX_POLAR) return PRINCIPAL_VALUE;
|
|
-- Purpose:
|
|
-- Returns argument (angle) in radians of the principal
|
|
-- value of Z
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- -MATH_PI < ARG(Z) <= MATH_PI
|
|
-- Notes:
|
|
-- ARG(Z) = Z.ARG
|
|
|
|
|
|
function "-" (Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns unary minus of Z
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- "-"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- Returns -x -jy for Z= x + jy
|
|
|
|
function "-" (Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of unary minus of Z
|
|
-- Special values:
|
|
-- "-"(Z) = COMPLEX_POLAR'(Z.MAG, MATH_PI) if Z.ARG = 0.0
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- Returns COMPLEX_POLAR'(Z.MAG, Z.ARG - SIGN(Z.ARG)*MATH_PI) if
|
|
-- Z.ARG /= 0.0
|
|
|
|
function CONJ (Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns complex conjugate of Z
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- CONJ(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- Returns x -jy for Z= x + jy
|
|
|
|
function CONJ (Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of complex conjugate of Z
|
|
-- Special values:
|
|
-- CONJ(Z) = COMPLEX_POLAR'(Z.MAG, MATH_PI) if Z.ARG = MATH_PI
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- Returns COMPLEX_POLAR'(Z.MAG, -Z.ARG) if Z.ARG /= MATH_PI
|
|
|
|
function SQRT(Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns square root of Z with positive real part
|
|
-- or, if the real part is zero, the one with nonnegative
|
|
-- imaginary part
|
|
-- Special values:
|
|
-- SQRT(MATH_CZERO) = MATH_CZERO
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- SQRT(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function SQRT(Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns square root of Z with positive real part
|
|
-- or, if the real part is zero, the one with nonnegative
|
|
-- imaginary part
|
|
-- Special values:
|
|
-- SQRT(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 0.0
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function EXP(Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns exponential of Z
|
|
-- Special values:
|
|
-- EXP(MATH_CZERO) = MATH_CBASE_1
|
|
-- EXP(Z) = -MATH_CBASE_1 if Z.RE = 0.0 and ABS(Z.IM) = MATH_PI
|
|
-- EXP(Z) = SIGN(Z.IM)*MATH_CBASE_J if Z.RE = 0.0 and
|
|
-- ABS(Z.IM) = MATH_PI_OVER_2
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- EXP(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
|
|
|
|
function EXP(Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of exponential of Z
|
|
-- Special values:
|
|
-- EXP(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG =0.0 and
|
|
-- Z.ARG = 0.0
|
|
-- EXP(Z) = COMPLEX_POLAR'(1.0, MATH_PI) if Z.MAG = MATH_PI and
|
|
-- ABS(Z.ARG) = MATH_PI_OVER_2
|
|
-- EXP(Z) = COMPLEX_POLAR'(1.0, MATH_PI_OVER_2) if
|
|
-- Z.MAG = MATH_PI_OVER_2 and
|
|
-- Z.ARG = MATH_PI_OVER_2
|
|
-- EXP(Z) = COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2) if
|
|
-- Z.MAG = MATH_PI_OVER_2 and
|
|
-- Z.ARG = -MATH_PI_OVER_2
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function LOG(Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns natural logarithm of Z
|
|
-- Special values:
|
|
-- LOG(MATH_CBASE_1) = MATH_CZERO
|
|
-- LOG(-MATH_CBASE_1) = COMPLEX'(0.0, MATH_PI)
|
|
-- LOG(MATH_CBASE_J) = COMPLEX'(0.0, MATH_PI_OVER_2)
|
|
-- LOG(-MATH_CBASE_J) = COMPLEX'(0.0, -MATH_PI_OVER_2)
|
|
-- LOG(Z) = MATH_CBASE_1 if Z = COMPLEX'(MATH_E, 0.0)
|
|
-- Domain:
|
|
-- Z in COMPLEX and ABS(Z) /= 0.0
|
|
-- Error conditions:
|
|
-- Error if ABS(Z) = 0.0
|
|
-- Range:
|
|
-- LOG(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function LOG2(Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns logarithm base 2 of Z
|
|
-- Special values:
|
|
-- LOG2(MATH_CBASE_1) = MATH_CZERO
|
|
-- LOG2(Z) = MATH_CBASE_1 if Z = COMPLEX'(2.0, 0.0)
|
|
-- Domain:
|
|
-- Z in COMPLEX and ABS(Z) /= 0.0
|
|
-- Error conditions:
|
|
-- Error if ABS(Z) = 0.0
|
|
-- Range:
|
|
-- LOG2(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function LOG10(Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns logarithm base 10 of Z
|
|
-- Special values:
|
|
-- LOG10(MATH_CBASE_1) = MATH_CZERO
|
|
-- LOG10(Z) = MATH_CBASE_1 if Z = COMPLEX'(10.0, 0.0)
|
|
-- Domain:
|
|
-- Z in COMPLEX and ABS(Z) /= 0.0
|
|
-- Error conditions:
|
|
-- Error if ABS(Z) = 0.0
|
|
-- Range:
|
|
-- LOG10(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function LOG(Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of natural logarithm of Z
|
|
-- Special values:
|
|
-- LOG(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
|
|
-- Z.ARG = 0.0
|
|
-- LOG(Z) = COMPLEX_POLAR'(MATH_PI, MATH_PI_OVER_2) if
|
|
-- Z.MAG = 1.0 and Z.ARG = MATH_PI
|
|
-- LOG(Z) = COMPLEX_POLAR'(MATH_PI_OVER_2, MATH_PI_OVER_2) if
|
|
-- Z.MAG = 1.0 and Z.ARG = MATH_PI_OVER_2
|
|
-- LOG(Z) = COMPLEX_POLAR'(MATH_PI_OVER_2, -MATH_PI_OVER_2) if
|
|
-- Z.MAG = 1.0 and Z.ARG = -MATH_PI_OVER_2
|
|
-- LOG(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = MATH_E and
|
|
-- Z.ARG = 0.0
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Z.MAG /= 0.0
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Error if Z.MAG = 0.0
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function LOG2(Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of logarithm base 2 of Z
|
|
-- Special values:
|
|
-- LOG2(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
|
|
-- Z.ARG = 0.0
|
|
-- LOG2(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = 2.0 and
|
|
-- Z.ARG = 0.0
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Z.MAG /= 0.0
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Error if Z.MAG = 0.0
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function LOG10(Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of logarithm base 10 of Z
|
|
-- Special values:
|
|
-- LOG10(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
|
|
-- Z.ARG = 0.0
|
|
-- LOG10(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = 10.0 and
|
|
-- Z.ARG = 0.0
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Z.MAG /= 0.0
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Error if Z.MAG = 0.0
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function LOG(Z : in COMPLEX; BASE : in REAL) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns logarithm base BASE of Z
|
|
-- Special values:
|
|
-- LOG(MATH_CBASE_1, BASE) = MATH_CZERO
|
|
-- LOG(Z,BASE) = MATH_CBASE_1 if Z = COMPLEX'(BASE, 0.0)
|
|
-- Domain:
|
|
-- Z in COMPLEX and ABS(Z) /= 0.0
|
|
-- BASE > 0.0
|
|
-- BASE /= 1.0
|
|
-- Error conditions:
|
|
-- Error if ABS(Z) = 0.0
|
|
-- Error if BASE <= 0.0
|
|
-- Error if BASE = 1.0
|
|
-- Range:
|
|
-- LOG(Z,BASE) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function LOG(Z : in COMPLEX_POLAR; BASE : in REAL) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of logarithm base BASE of Z
|
|
-- Special values:
|
|
-- LOG(Z, BASE) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
|
|
-- Z.ARG = 0.0
|
|
-- LOG(Z, BASE) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = BASE and
|
|
-- Z.ARG = 0.0
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Z.MAG /= 0.0
|
|
-- BASE > 0.0
|
|
-- BASE /= 1.0
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Error if Z.MAG = 0.0
|
|
-- Error if BASE <= 0.0
|
|
-- Error if BASE = 1.0
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function SIN (Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns sine of Z
|
|
-- Special values:
|
|
-- SIN(MATH_CZERO) = MATH_CZERO
|
|
-- SIN(Z) = MATH_CZERO if Z = COMPLEX'(MATH_PI, 0.0)
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- ABS(SIN(Z)) <= SQRT(SIN(Z.RE)*SIN(Z.RE) +
|
|
-- SINH(Z.IM)*SINH(Z.IM))
|
|
-- Notes:
|
|
-- None
|
|
|
|
function SIN (Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of sine of Z
|
|
-- Special values:
|
|
-- SIN(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 0.0 and
|
|
-- Z.ARG = 0.0
|
|
-- SIN(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI and
|
|
-- Z.ARG = 0.0
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function COS (Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns cosine of Z
|
|
-- Special values:
|
|
-- COS(Z) = MATH_CZERO if Z = COMPLEX'(MATH_PI_OVER_2, 0.0)
|
|
-- COS(Z) = MATH_CZERO if Z = COMPLEX'(-MATH_PI_OVER_2, 0.0)
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- ABS(COS(Z)) <= SQRT(COS(Z.RE)*COS(Z.RE) +
|
|
-- SINH(Z.IM)*SINH(Z.IM))
|
|
-- Notes:
|
|
-- None
|
|
|
|
|
|
function COS (Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of cosine of Z
|
|
-- Special values:
|
|
-- COS(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI_OVER_2
|
|
-- and Z.ARG = 0.0
|
|
-- COS(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI_OVER_2
|
|
-- and Z.ARG = MATH_PI
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function SINH (Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns hyperbolic sine of Z
|
|
-- Special values:
|
|
-- SINH(MATH_CZERO) = MATH_CZERO
|
|
-- SINH(Z) = MATH_CZERO if Z.RE = 0.0 and Z.IM = MATH_PI
|
|
-- SINH(Z) = MATH_CBASE_J if Z.RE = 0.0 and
|
|
-- Z.IM = MATH_PI_OVER_2
|
|
-- SINH(Z) = -MATH_CBASE_J if Z.RE = 0.0 and
|
|
-- Z.IM = -MATH_PI_OVER_2
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- ABS(SINH(Z)) <= SQRT(SINH(Z.RE)*SINH(Z.RE) +
|
|
-- SIN(Z.IM)*SIN(Z.IM))
|
|
-- Notes:
|
|
-- None
|
|
|
|
function SINH (Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of hyperbolic sine of Z
|
|
-- Special values:
|
|
-- SINH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 0.0 and
|
|
-- Z.ARG = 0.0
|
|
-- SINH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI and
|
|
-- Z.ARG = MATH_PI_OVER_2
|
|
-- SINH(Z) = COMPLEX_POLAR'(1.0, MATH_PI_OVER_2) if Z.MAG =
|
|
-- MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2
|
|
-- SINH(Z) = COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2) if Z.MAG =
|
|
-- MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function COSH (Z : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns hyperbolic cosine of Z
|
|
-- Special values:
|
|
-- COSH(MATH_CZERO) = MATH_CBASE_1
|
|
-- COSH(Z) = -MATH_CBASE_1 if Z.RE = 0.0 and Z.IM = MATH_PI
|
|
-- COSH(Z) = MATH_CZERO if Z.RE = 0.0 and Z.IM = MATH_PI_OVER_2
|
|
-- COSH(Z) = MATH_CZERO if Z.RE = 0.0 and Z.IM = -MATH_PI_OVER_2
|
|
-- Domain:
|
|
-- Z in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- ABS(COSH(Z)) <= SQRT(SINH(Z.RE)*SINH(Z.RE) +
|
|
-- COS(Z.IM)*COS(Z.IM))
|
|
-- Notes:
|
|
-- None
|
|
|
|
|
|
function COSH (Z : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns principal value of hyperbolic cosine of Z
|
|
-- Special values:
|
|
-- COSH(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = 0.0 and
|
|
-- Z.ARG = 0.0
|
|
-- COSH(Z) = COMPLEX_POLAR'(1.0, MATH_PI) if Z.MAG = MATH_PI and
|
|
-- Z.ARG = MATH_PI_OVER_2
|
|
-- COSH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG =
|
|
-- MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2
|
|
-- COSH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG =
|
|
-- MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2
|
|
-- Domain:
|
|
-- Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if Z.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
--
|
|
-- Arithmetic Operators
|
|
--
|
|
|
|
function "+" (L : in COMPLEX; R : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic addition of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX
|
|
-- R in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- "+"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "+" (L : in REAL; R : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic addition of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in REAL
|
|
-- R in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- "+"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "+" (L : in COMPLEX; R : in REAL) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic addition of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX
|
|
-- R in REAL
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- "+"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "+" (L : in COMPLEX_POLAR; R : in COMPLEX_POLAR)
|
|
return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic addition of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
|
|
function "+" (L : in REAL; R : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic addition of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in REAL
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "+" (L : in COMPLEX_POLAR; R : in REAL) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic addition of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R in REAL
|
|
-- Error conditions:
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "-" (L : in COMPLEX; R : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic subtraction of L minus R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX
|
|
-- R in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- "-"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "-" (L : in REAL; R : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic subtraction of L minus R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in REAL
|
|
-- R in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- "-"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "-" (L : in COMPLEX; R : in REAL) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic subtraction of L minus R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX
|
|
-- R in REAL
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- "-"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "-" (L : in COMPLEX_POLAR; R : in COMPLEX_POLAR)
|
|
return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic subtraction of L minus R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "-" (L : in REAL; R : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic subtraction of L minus R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in REAL
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
|
|
function "-" (L : in COMPLEX_POLAR; R : in REAL) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic subtraction of L minus R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R in REAL
|
|
-- Error conditions:
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "*" (L : in COMPLEX; R : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic multiplication of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX
|
|
-- R in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- "*"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "*" (L : in REAL; R : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic multiplication of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in REAL
|
|
-- R in COMPLEX
|
|
-- Error conditions:
|
|
-- None
|
|
-- Range:
|
|
-- "*"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "*" (L : in COMPLEX; R : in REAL) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic multiplication of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX
|
|
-- R in REAL
|
|
-- Error conditions:
|
|
-- None
|
|
|
|
-- Range:
|
|
-- "*"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "*" (L : in COMPLEX_POLAR; R : in COMPLEX_POLAR)
|
|
return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic multiplication of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "*" (L : in REAL; R : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic multiplication of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in REAL
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- Error conditions:
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "*" (L : in COMPLEX_POLAR; R : in REAL) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic multiplication of L and R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R in REAL
|
|
-- Error conditions:
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
|
|
function "/" (L : in COMPLEX; R : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic division of L by R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX
|
|
-- R in COMPLEX and R /= MATH_CZERO
|
|
-- Error conditions:
|
|
-- Error if R = MATH_CZERO
|
|
-- Range:
|
|
-- "/"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "/" (L : in REAL; R : in COMPLEX) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic division of L by R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in REAL
|
|
-- R in COMPLEX and R /= MATH_CZERO
|
|
-- Error conditions:
|
|
-- Error if R = MATH_CZERO
|
|
-- Range:
|
|
-- "/"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "/" (L : in COMPLEX; R : in REAL) return COMPLEX;
|
|
-- Purpose:
|
|
-- Returns arithmetic division of L by R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX
|
|
-- R in REAL and R /= 0.0
|
|
-- Error conditions:
|
|
-- Error if R = 0.0
|
|
-- Range:
|
|
-- "/"(Z) is mathematically unbounded
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "/" (L : in COMPLEX_POLAR; R : in COMPLEX_POLAR)
|
|
return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic division of L by R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- R.MAG > 0.0
|
|
-- Error conditions:
|
|
-- Error if R.MAG <= 0.0
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "/" (L : in REAL; R : in COMPLEX_POLAR) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic division of L by R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in REAL
|
|
-- R in COMPLEX_POLAR and R.ARG /= -MATH_PI
|
|
-- R.MAG > 0.0
|
|
-- Error conditions:
|
|
-- Error if R.MAG <= 0.0
|
|
-- Error if R.ARG = -MATH_PI
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
function "/" (L : in COMPLEX_POLAR; R : in REAL) return COMPLEX_POLAR;
|
|
-- Purpose:
|
|
-- Returns arithmetic division of L by R
|
|
-- Special values:
|
|
-- None
|
|
-- Domain:
|
|
-- L in COMPLEX_POLAR and L.ARG /= -MATH_PI
|
|
-- R /= 0.0
|
|
-- Error conditions:
|
|
-- Error if L.ARG = -MATH_PI
|
|
-- Error if R = 0.0
|
|
-- Range:
|
|
-- result.MAG >= 0.0
|
|
-- -MATH_PI < result.ARG <= MATH_PI
|
|
-- Notes:
|
|
-- None
|
|
|
|
attribute foreign of MATH_COMPLEX: package is "NO C code generation";
|
|
|
|
attribute foreign of "="[complex_polar, complex_polar return boolean]:function is "ieee_math_complex_equal_polar";
|
|
attribute foreign of "/="[complex_polar, complex_polar return boolean]:function is "ieee_math_complex_not_equal_polar";
|
|
attribute foreign of cmplx[real, real return complex]:function is "ieee_math_complex_cmplx";
|
|
attribute foreign of get_principal_value[real return principal_value]:function is "ieee_math_complex_get_principal_value";
|
|
attribute foreign of complex_to_polar[complex return complex_polar]:function is "ieee_math_complex_complex_to_polar";
|
|
attribute foreign of polar_to_complex[complex_polar return complex]:function is "ieee_math_complex_polar_to_complex";
|
|
attribute foreign of "ABS"[complex return positive_real]:function is "ieee_math_complex_abs";
|
|
attribute foreign of "ABS"[complex_polar return positive_real]:function is "ieee_math_complex_abs_polar";
|
|
attribute foreign of arg[complex return principal_value]:function is "ieee_math_complex_arg";
|
|
attribute foreign of arg[complex_polar return principal_value]:function is "ieee_math_complex_arg_polar";
|
|
attribute foreign of "-"[complex return complex]:function is "ieee_math_complex_negation";
|
|
attribute foreign of "-"[complex_polar return complex_polar]:function is "ieee_math_complex_negation_polar";
|
|
attribute foreign of conj[complex return complex]:function is "ieee_math_complex_conj";
|
|
attribute foreign of conj[complex_polar return complex_polar]:function is "ieee_math_complex_conj_polar";
|
|
attribute foreign of sqrt[complex return complex]:function is "ieee_math_complex_sqrt";
|
|
attribute foreign of sqrt[complex_polar return complex_polar]:function is "ieee_math_complex_sqrt_polar";
|
|
attribute foreign of exp[complex return complex]:function is "ieee_math_complex_exp";
|
|
attribute foreign of exp[complex_polar return complex_polar]:function is "ieee_math_complex_exp_polar";
|
|
attribute foreign of log[complex return complex]:function is "ieee_math_complex_log";
|
|
attribute foreign of log2[complex return complex]:function is "ieee_math_complex_log2";
|
|
attribute foreign of log[complex_polar return complex_polar]:function is "ieee_math_complex_log_polar";
|
|
attribute foreign of log2[complex_polar return complex_polar]:function is "ieee_math_complex_log2_polar";
|
|
attribute foreign of log10[complex_polar return complex_polar]:function is "ieee_math_complex_log10_polar";
|
|
attribute foreign of log[complex, real return complex]:function is "ieee_math_complex_log_base";
|
|
attribute foreign of log[complex_polar, real return complex_polar]:function is "ieee_math_complex_log_base_polar";
|
|
attribute foreign of sin[complex return complex]:function is "ieee_math_complex_sin";
|
|
attribute foreign of sin[complex_polar return complex_polar]:function is "ieee_math_complex_sin_polar";
|
|
attribute foreign of cos[complex return complex]:function is "ieee_math_complex_cos";
|
|
attribute foreign of cos[complex_polar return complex_polar]:function is "ieee_math_complex_cos_polar";
|
|
attribute foreign of sinh[complex return complex]:function is "ieee_math_complex_sinh";
|
|
attribute foreign of sinh[complex_polar return complex_polar]:function is "ieee_math_complex_sinh_polar";
|
|
attribute foreign of cosh[complex return complex]:function is "ieee_math_complex_cosh";
|
|
attribute foreign of cosh[complex_polar return complex_polar]:function is "ieee_math_complex_cosh_polar";
|
|
attribute foreign of "+"[complex, complex return complex]:function is "ieee_math_complex_add_cc";
|
|
attribute foreign of "+"[real, complex return complex]:function is "ieee_math_complex_add_rc";
|
|
attribute foreign of "+"[complex, real return complex]:function is "ieee_math_complex_add_cr";
|
|
attribute foreign of "+"[complex_polar, complex_polar return complex_polar]:function is "ieee_math_complex_add_polar_cc";
|
|
attribute foreign of "+"[real, complex_polar return complex_polar]:function is "ieee_math_complex_add_polar_rc";
|
|
attribute foreign of "+"[complex_polar, real return complex_polar]:function is "ieee_math_complex_add_polar_cr";
|
|
attribute foreign of "-"[complex, complex return complex]:function is "ieee_math_complex_subtract_cc";
|
|
attribute foreign of "-"[real, complex return complex]:function is "ieee_math_complex_subtract_rc";
|
|
attribute foreign of "-"[complex, real return complex]:function is "ieee_math_complex_subtract_cr";
|
|
attribute foreign of "-"[complex_polar, complex_polar return complex_polar]:function is "ieee_math_complex_subtract_polar_cc";
|
|
attribute foreign of "-"[real, complex_polar return complex_polar]:function is "ieee_math_complex_subtract_polar_rc";
|
|
attribute foreign of "-"[complex_polar, real return complex_polar]:function is "ieee_math_complex_subtract_polar_cr";
|
|
attribute foreign of "*"[complex, complex return complex]:function is "ieee_math_complex_multiply_cc";
|
|
attribute foreign of "*"[real, complex return complex]:function is "ieee_math_complex_multiply_rc";
|
|
attribute foreign of "*"[complex, real return complex]:function is "ieee_math_complex_multiply_cr";
|
|
attribute foreign of "*"[complex_polar, complex_polar return complex_polar]:function is "ieee_math_complex_multiply_polar_cc";
|
|
attribute foreign of "*"[real, complex_polar return complex_polar]:function is "ieee_math_complex_multiply_polar_rc";
|
|
attribute foreign of "*"[complex_polar, real return complex_polar]:function is "ieee_math_complex_multiply_polar_cr";
|
|
attribute foreign of "/"[complex, complex return complex]:function is "ieee_math_complex_divide_cc";
|
|
attribute foreign of "/"[real, complex return complex]:function is "ieee_math_complex_divide_rc";
|
|
attribute foreign of "/"[complex, real return complex]:function is "ieee_math_complex_divide_cr";
|
|
attribute foreign of "/"[complex_polar, complex_polar return complex_polar]:function is "ieee_math_complex_divide_polar_cc";
|
|
attribute foreign of "/"[real, complex_polar return complex_polar]:function is "ieee_math_complex_divide_polar_rc";
|
|
attribute foreign of "/"[complex_polar, real return complex_polar]:function is "ieee_math_complex_divide_polar_cr";
|
|
|
|
end package MATH_COMPLEX;
|