300 lines
9.2 KiB
Verilog

`timescale 1 ns / 1 ps
module AXI #(
parameter integer OUTPUT_WIDTH = 12,
parameter integer PHASE_WIDTH = 32,
parameter integer C_S_AXI_DATA_WIDTH = 32,
parameter integer C_S_AXI_ADDR_WIDTH = 4
) (
// Users to add ports here
// User ports ends
// Do not modify the ports beyond this line
input wire S_AXI_ACLK,
input wire S_AXI_ARESETN,
input wire S_AXI_WVALID,
output wire S_AXI_RVALID,
output wire S_AXI_WREADY,
input wire S_AXI_RREADY,
input wire S_AXI_AWVALID,
input wire S_AXI_ARVALID,
output wire S_AXI_AWREADY,
output wire S_AXI_ARREADY,
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
input wire [2 : 0] S_AXI_AWPROT,
input wire [2 : 0] S_AXI_ARPROT,
output wire [1 : 0] S_AXI_BRESP,
output wire [1 : 0] S_AXI_RRESP,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB
);
// AXI4LITE signals
reg axi_awready;
reg axi_arready;
reg axi_bvalid;
reg axi_rvalid;
reg axi_wready;
reg [1 : 0] axi_bresp;
reg [1 : 0] axi_rresp;
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
// Example-specific design signals
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
// ADDR_LSB is used for addressing 32/64 bit registers/memories
// ADDR_LSB = 2 for 32 bits (n downto 2)
// ADDR_LSB = 3 for 64 bits (n downto 3)
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
localparam integer OPT_MEM_ADDR_BITS = 1;
//----------------------------------------------
//-- Signals for user logic register space example
//------------------------------------------------
//-- Number of Slave Registers 4
reg aw_en;
wire slv_reg_rden;
wire slv_reg_wren;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
integer byte_index;
// I/O Connections assignments
assign S_AXI_AWREADY = axi_awready;
assign S_AXI_WREADY = axi_wready;
assign S_AXI_BRESP = axi_bresp;
assign S_AXI_BVALID = axi_bvalid;
assign S_AXI_ARREADY = axi_arready;
assign S_AXI_RDATA = axi_rdata;
assign S_AXI_RRESP = axi_rresp;
assign S_AXI_RVALID = axi_rvalid;
// Implement axi_awready generation
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK ) begin
if ( S_AXI_ARESETN == 1'b0 ) begin
axi_awready <= 1'b0;
aw_en <= 1'b1;
end
else begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en) begin
axi_awready <= 1'b1;
aw_en <= 1'b0;
end
else if (S_AXI_BREADY && axi_bvalid) begin
aw_en <= 1'b1;
axi_awready <= 1'b0;
end
else begin
axi_awready <= 1'b0;
end
end
end
// Implement axi_awaddr latching
// This process is used to latch the address when both
// S_AXI_AWVALID and S_AXI_WVALID are valid.
always @( posedge S_AXI_ACLK ) begin
if ( S_AXI_ARESETN == 1'b0 ) begin
axi_awaddr <= 0;
end
else begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en) begin
// Write Address latching
axi_awaddr <= S_AXI_AWADDR;
end
end
end
// Implement axi_wready generation
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK ) begin
if ( S_AXI_ARESETN == 1'b0 ) begin
axi_wready <= 1'b0;
end
else begin
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en ) begin
axi_wready <= 1'b1;
end
else begin
axi_wready <= 1'b0;
end
end
end
// Implement write response logic generation
// The write response and response valid signals are asserted by the slave
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
// This marks the acceptance of address and indicates the status of
// write transaction.
always @( posedge S_AXI_ACLK ) begin
if ( S_AXI_ARESETN == 1'b0 ) begin
axi_bvalid <= 0;
axi_bresp <= 2'b0;
end
else begin
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID) begin
// indicates a valid write response is available
axi_bvalid <= 1'b1;
axi_bresp <= 2'b0; // 'OKAY' response
end // work error responses in future
else begin
if (S_AXI_BREADY && axi_bvalid) begin
axi_bvalid <= 1'b0;
end
end
end
end
// Implement axi_arready generation
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
// S_AXI_ARVALID is asserted. axi_awready is
// de-asserted when reset (active low) is asserted.
// The read address is also latched when S_AXI_ARVALID is
// asserted. axi_araddr is reset to zero on reset assertion.
always @( posedge S_AXI_ACLK ) begin
if ( S_AXI_ARESETN == 1'b0 ) begin
axi_arready <= 1'b0;
axi_araddr <= 32'b0;
end
else begin
if (~axi_arready && S_AXI_ARVALID) begin
// indicates that the slave has acceped the valid read address
axi_arready <= 1'b1;
// Read address latching
axi_araddr <= S_AXI_ARADDR;
end
else begin
axi_arready <= 1'b0;
end
end
end
// Implement axi_arvalid generation
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
// data are available on the axi_rdata bus at this instance. The
// assertion of axi_rvalid marks the validity of read data on the
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
// is deasserted on reset (active low). axi_rresp and axi_rdata are
// cleared to zero on reset (active low).
always @( posedge S_AXI_ACLK ) begin
if ( S_AXI_ARESETN == 1'b0 ) begin
axi_rvalid <= 0;
axi_rresp <= 0;
end
else begin
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid) begin
// Valid read data is available at the read data bus
axi_rvalid <= 1'b1;
axi_rresp <= 2'b0; // 'OKAY' response
end
else if (axi_rvalid && S_AXI_RREADY) begin
// Read data is accepted by the master
axi_rvalid <= 1'b0;
end
end
end
// Output register or memory read data
always @( posedge S_AXI_ACLK ) begin
if ( S_AXI_ARESETN == 1'b0 ) begin
axi_rdata <= 0;
end
else begin
if (slv_reg_rden) begin
axi_rdata <= reg_data_out; // register read data
end
end
end
// Implement memory mapped register select and write logic generation
// The write data is accepted and written to memory mapped registers when
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
// select byte enables of slave registers while writing.
// These registers are cleared when reset (active low) is applied.
// Slave register write enable is asserted when valid address and data are available
// and the slave is ready to accept the write address and write data.
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
always @( posedge S_AXI_ACLK ) begin
if ( S_AXI_ARESETN == 1'b0 ) begin
slv_reg0 <= 0;
slv_reg1 <= 0;
slv_reg2 <= 0;
slv_reg3 <= 0;
end
else begin
if (slv_reg_wren) begin
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
4'd0:for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
4'd1:for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
4'd2:for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
4'd3:for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
default :
begin
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
slv_reg3 <= slv_reg3;
end
endcase
end
end
end
// Implement memory mapped register select and read logic generation
// Slave register read enable is asserted when valid address is available
// and the slave is ready to accept the read address.
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
always @(*) begin
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
4'd0 : reg_data_out <= slv_reg0;
4'd1 : reg_data_out <= slv_reg1;
4'd2 : reg_data_out <= slv_reg2;
4'd3 : reg_data_out <= slv_reg3;
default : reg_data_out <= 0;
endcase
end
// Add user logic here
// User logic ends
endmodule