Compare commits
No commits in common. "9fcc22b55a1002684eebf598e6ddc17e9a489f2d" and "34885dd8d00716da9e969de8b7fca9412aefeb52" have entirely different histories.
9fcc22b55a
...
34885dd8d0
@ -68,7 +68,7 @@ export const contributors = [
|
|||||||
nameAliases: ['li1553770945'],
|
nameAliases: ['li1553770945'],
|
||||||
avatar: 'https://avatars.githubusercontent.com/u/55867654?v=4',
|
avatar: 'https://avatars.githubusercontent.com/u/55867654?v=4',
|
||||||
mapByEmailAliases: ['1553770945@qq.com'],
|
mapByEmailAliases: ['1553770945@qq.com'],
|
||||||
links: [{ type: '', link: 'https://peacesheep.xyz/home' }]
|
links: [{ type: '', link: 'https://peacesheep.cn/home' }]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
name: '星弧梦影',
|
name: '星弧梦影',
|
||||||
|
@ -133,13 +133,13 @@ export default {
|
|||||||
text: 'Development Examples',
|
text: 'Development Examples',
|
||||||
items: [
|
items: [
|
||||||
{ text: 'MCP Server Development Examples', link: '/plugin-tutorial/examples/mcp-examples' },
|
{ text: 'MCP Server Development Examples', link: '/plugin-tutorial/examples/mcp-examples' },
|
||||||
// { text: 'Example 1: Weather Info MCP in Python (STDIO)', link: '/plugin-tutorial/examples/python-simple-stdio' },
|
{ text: 'Example 1: Weather Info MCP in Python (STDIO)', link: '/plugin-tutorial/examples/python-simple-stdio' },
|
||||||
// { text: 'Example 2: Read-only Neo4j MCP in Go (SSE)', link: '/plugin-tutorial/examples/go-neo4j-sse' },
|
{ text: 'Example 2: Read-only Neo4j MCP in Go (SSE)', link: '/plugin-tutorial/examples/go-neo4j-sse' },
|
||||||
// { text: 'Example 3: Read-only Document DB MCP in Java (HTTP)', link: '/plugin-tutorial/examples/java-es-http' },
|
{ text: 'Example 3: Read-only Document DB MCP in Java (HTTP)', link: '/plugin-tutorial/examples/java-es-http' },
|
||||||
// { text: 'Example 4: Super Web Crawler MCP in TypeScript using crawl4ai (STDIO)', link: '/plugin-tutorial/examples/typescript-crawl4ai-stdio' },
|
{ text: 'Example 4: Super Web Crawler MCP in TypeScript using crawl4ai (STDIO)', link: '/plugin-tutorial/examples/typescript-crawl4ai-stdio' },
|
||||||
// { text: 'Example 5: Generic Form Filling MCP in Python (STDIO)', link: '/plugin-tutorial/examples/python-form-stdio' },
|
{ text: 'Example 5: Generic Form Filling MCP in Python (STDIO)', link: '/plugin-tutorial/examples/python-form-stdio' },
|
||||||
// { text: 'Example 6: Blender-based MCP in Python (STDIO)', link: '/plugin-tutorial/examples/python-blender-stdio' },
|
{ text: 'Example 6: Blender-based MCP in Python (STDIO)', link: '/plugin-tutorial/examples/python-blender-stdio' },
|
||||||
// { text: 'Example 7: Cadence EDA MCP in Python (STDIO)', link: '/plugin-tutorial/examples/python-cadence-stdio' }
|
{ text: 'Example 7: Cadence EDA MCP in Python (STDIO)', link: '/plugin-tutorial/examples/python-cadence-stdio' }
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -132,13 +132,13 @@ export default {
|
|||||||
text: '開発事例',
|
text: '開発事例',
|
||||||
items: [
|
items: [
|
||||||
{ text: 'MCP サーバー開発事例', link: '/ja/plugin-tutorial/examples/mcp-examples' },
|
{ text: 'MCP サーバー開発事例', link: '/ja/plugin-tutorial/examples/mcp-examples' },
|
||||||
// { text: '例 1. Python による天気情報 MCP サーバー (STDIO)', link: '/ja/plugin-tutorial/examples/python-simple-stdio' },
|
{ text: '例 1. Python による天気情報 MCP サーバー (STDIO)', link: '/ja/plugin-tutorial/examples/python-simple-stdio' },
|
||||||
// { text: '例 2. Go による neo4j 読み取り専用 MCP サーバー (SSE)', link: '/ja/plugin-tutorial/examples/go-neo4j-sse' },
|
{ text: '例 2. Go による neo4j 読み取り専用 MCP サーバー (SSE)', link: '/ja/plugin-tutorial/examples/go-neo4j-sse' },
|
||||||
// { text: '例 3. Java によるドキュメントデータベース MCP (HTTP)', link: '/ja/plugin-tutorial/examples/java-es-http' },
|
{ text: '例 3. Java によるドキュメントデータベース MCP (HTTP)', link: '/ja/plugin-tutorial/examples/java-es-http' },
|
||||||
// { text: '例 4. TypeScript による crawl4ai ベースのスーパーウェブクローラー MCP (STDIO)', link: '/ja/plugin-tutorial/examples/typescript-crawl4ai-stdio' },
|
{ text: '例 4. TypeScript による crawl4ai ベースのスーパーウェブクローラー MCP (STDIO)', link: '/ja/plugin-tutorial/examples/typescript-crawl4ai-stdio' },
|
||||||
// { text: '例 5. Python による汎用フォーム入力 MCP (STDIO)', link: '/ja/plugin-tutorial/examples/python-form-stdio' },
|
{ text: '例 5. Python による汎用フォーム入力 MCP (STDIO)', link: '/ja/plugin-tutorial/examples/python-form-stdio' },
|
||||||
// { text: '例 6. Python による Blender ベース MCP (STDIO)', link: '/ja/plugin-tutorial/examples/python-blender-stdio' },
|
{ text: '例 6. Python による Blender ベース MCP (STDIO)', link: '/ja/plugin-tutorial/examples/python-blender-stdio' },
|
||||||
// { text: '例 7. Python による Cadence EDA MCP (STDIO)', link: '/ja/plugin-tutorial/examples/python-cadence-stdio' }
|
{ text: '例 7. Python による Cadence EDA MCP (STDIO)', link: '/ja/plugin-tutorial/examples/python-cadence-stdio' }
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -132,13 +132,13 @@ export default {
|
|||||||
text: '开发案例',
|
text: '开发案例',
|
||||||
items: [
|
items: [
|
||||||
{ text: 'MCP 服务器开发案例', link: '/zh/plugin-tutorial/examples/mcp-examples' },
|
{ text: 'MCP 服务器开发案例', link: '/zh/plugin-tutorial/examples/mcp-examples' },
|
||||||
// { text: '例子 1. python 实现天气信息 mcp 服务器 (STDIO)', link: '/zh/plugin-tutorial/examples/python-simple-stdio' },
|
{ text: '例子 1. python 实现天气信息 mcp 服务器 (STDIO)', link: '/zh/plugin-tutorial/examples/python-simple-stdio' },
|
||||||
// { text: '例子 2. go 实现 neo4j 的只读 mcp 服务器 (SSE)', link: '/zh/plugin-tutorial/examples/go-neo4j-sse' },
|
{ text: '例子 2. go 实现 neo4j 的只读 mcp 服务器 (SSE)', link: '/zh/plugin-tutorial/examples/go-neo4j-sse' },
|
||||||
// { text: '例子 3. java 实现文档数据库的只读 mcp (HTTP)', link: '/zh/plugin-tutorial/examples/java-es-http' },
|
{ text: '例子 3. java 实现文档数据库的只读 mcp (HTTP)', link: '/zh/plugin-tutorial/examples/java-es-http' },
|
||||||
// { text: '例子 4. typescript 实现基于 crawl4ai 的超级网页爬虫 mcp (STDIO)', link: '/zh/plugin-tutorial/examples/typescript-crawl4ai-stdio' },
|
{ text: '例子 4. typescript 实现基于 crawl4ai 的超级网页爬虫 mcp (STDIO)', link: '/zh/plugin-tutorial/examples/typescript-crawl4ai-stdio' },
|
||||||
// { text: '例子 5. python 实现进行通用表单填充 的 mcp (STDIO)', link: '/zh/plugin-tutorial/examples/python-form-stdio' },
|
{ text: '例子 5. python 实现进行通用表单填充 的 mcp (STDIO)', link: '/zh/plugin-tutorial/examples/python-form-stdio' },
|
||||||
// { text: '例子 6. python 实现基于 blender 的 mcp (STDIO)', link: '/zh/plugin-tutorial/examples/python-blender-stdio' },
|
{ text: '例子 6. python 实现基于 blender 的 mcp (STDIO)', link: '/zh/plugin-tutorial/examples/python-blender-stdio' },
|
||||||
// { text: '例子 7. python 实现 cadence EDA 的 mcp (STDIO)', link: '/zh/plugin-tutorial/examples/python-cadence-stdio' },
|
{ text: '例子 7. python 实现 cadence EDA 的 mcp (STDIO)', link: '/zh/plugin-tutorial/examples/python-cadence-stdio' },
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -74,14 +74,6 @@ const contributors = [
|
|||||||
links: [
|
links: [
|
||||||
{ icon: 'github', link: 'https://github.com/ZYD045692' },
|
{ icon: 'github', link: 'https://github.com/ZYD045692' },
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
avatar: 'https://avatars.githubusercontent.com/u/81767213?v=4',
|
|
||||||
name: 'Zhenyu (Dormiveglia-elf)',
|
|
||||||
title: 'Developer',
|
|
||||||
links: [
|
|
||||||
{ icon: 'github', link: 'https://github.com/Dormiveglia-elf' },
|
|
||||||
]
|
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
</script>
|
</script>
|
||||||
|
@ -16,8 +16,11 @@ next:
|
|||||||
- [Cadence EDA MCP (STDIO)](./python-cadence-stdio)
|
- [Cadence EDA MCP (STDIO)](./python-cadence-stdio)
|
||||||
Electronic design automation interface
|
Electronic design automation interface
|
||||||
- Video Editing via FFmpeg MCP
|
- Video Editing via FFmpeg MCP
|
||||||
- [Building a RAG-Based Memory Storage MCP Server in Python](./python-rag_memo-stdio.md)
|
AI-driven video editing workflows
|
||||||
|
- Knowledge Base Injection with RAG MCP
|
||||||
|
Dynamic document retrieval system
|
||||||
- Stable Diffusion MCP Server
|
- Stable Diffusion MCP Server
|
||||||
|
Text-to-image generation service
|
||||||
|
|
||||||
## Node.js
|
## Node.js
|
||||||
- [Crawl4AI Web Crawler MCP (STDIO)](./typescript-crawl4ai-stdio)
|
- [Crawl4AI Web Crawler MCP (STDIO)](./typescript-crawl4ai-stdio)
|
||||||
|
@ -1,392 +0,0 @@
|
|||||||
# Building a RAG-Based Memory Storage MCP Server in Python
|
|
||||||
|
|
||||||
[Tutorial Code Repository](https://github.com/Dormiveglia-elf/rag_memo_mcp)
|
|
||||||
|
|
||||||
## Introduction
|
|
||||||
|
|
||||||
In this tutorial, we'll demonstrate how to build a simple RAG (Retrieval-Augmented Generation) based long-term memory storage MCP server using Python, and debug it using the [openmcp](https://github.com/LSTM-Kirigaya/openmcp-client) plugin. Once implemented, we'll be able to store, retrieve, and manage our memories through natural language interactions with large language models, without needing to write any specific query code.
|
|
||||||
|
|
||||||
## 1. Setup
|
|
||||||
|
|
||||||
The project structure is as follows:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
📦rag_memo_mcp
|
|
||||||
┣ 📂memory_db/ # LanceDB database files, created during initialization
|
|
||||||
┣ 📜server.py # MCP server implementation
|
|
||||||
┣ 📜pyproject.toml # Project configuration file
|
|
||||||
┣ 📜uv.lock # uv lockfile
|
|
||||||
┗ ...
|
|
||||||
```
|
|
||||||
|
|
||||||
First, let's prepare the runtime environment. This project recommends using [uv](https://github.com/astral-sh/uv). (`uv` is a blazingly fast Python package manager that's beloved by those who use it. Of course, if you're a loyal fan of `pip` or other package managers, that works perfectly fine too.)
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# First download uv (Windows)
|
|
||||||
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
|
||||||
# Or (macOS/Linux)
|
|
||||||
# curl -LsSf https://astral.sh/uv/install.sh | sh
|
|
||||||
```
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# Project initialization
|
|
||||||
uv init rag_memo_mcp
|
|
||||||
cd rag_memo_mcp
|
|
||||||
# We recommend creating a virtual environment
|
|
||||||
uv venv
|
|
||||||
# Activate virtual environment (Windows)
|
|
||||||
.venv\Scripts\activate
|
|
||||||
# Or (macOS/Linux)
|
|
||||||
# source .venv/bin/activate
|
|
||||||
|
|
||||||
# Install dependencies
|
|
||||||
uv add "mcp[cli]" lancedb pandas sentence-transformers
|
|
||||||
```
|
|
||||||
|
|
||||||
## 2. Understanding the Service Implementation
|
|
||||||
|
|
||||||
Unlike traditional databases that require pre-installation and configuration, this project's core `MemoryStore` uses [LanceDB](https://lancedb.github.io/), a vector database that automatically creates and initializes itself in the `memory_db` directory when the server first starts, requiring no additional configuration.
|
|
||||||
|
|
||||||
Let's dive into `server.py` to understand its implementation details.
|
|
||||||
|
|
||||||
### 2.1 MemoryStore Core Class
|
|
||||||
|
|
||||||
The `MemoryStore` class is the heart of memory storage and retrieval functionality.
|
|
||||||
|
|
||||||
```python
|
|
||||||
class MemoryStore:
|
|
||||||
```
|
|
||||||
|
|
||||||
- **`initialize()`**: This method handles initialization. It connects to the LanceDB database (creating it if it doesn't exist), defines the memory table schema, and by default loads the `all-MiniLM-L6-v2` model for generating vector embeddings from text content.
|
|
||||||
|
|
||||||
```python
|
|
||||||
def __init__(self, db_path: str = "./memory_db"):
|
|
||||||
self.db_path = db_path
|
|
||||||
self.db = None
|
|
||||||
self.table = None
|
|
||||||
self.encoder = None
|
|
||||||
self._initialized = False
|
|
||||||
|
|
||||||
async def initialize(self):
|
|
||||||
if self._initialized:
|
|
||||||
return
|
|
||||||
|
|
||||||
self.encoder = SentenceTransformer("all-MiniLM-L6-v2")
|
|
||||||
|
|
||||||
self.db = lancedb.connect(self.db_path)
|
|
||||||
|
|
||||||
schema = pa.schema(
|
|
||||||
[
|
|
||||||
pa.field("id", pa.string()),
|
|
||||||
pa.field("content", pa.string()),
|
|
||||||
pa.field("summary", pa.string()),
|
|
||||||
pa.field("tags", pa.list_(pa.string())),
|
|
||||||
pa.field("timestamp", pa.timestamp("us")),
|
|
||||||
pa.field("category", pa.string()),
|
|
||||||
pa.field("importance", pa.int32()),
|
|
||||||
pa.field(
|
|
||||||
"vector", pa.list_(pa.float32(), 384)
|
|
||||||
),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
|
||||||
self.table = self.db.open_table("memories")
|
|
||||||
except Exception:
|
|
||||||
self.table = self.db.create_table("memories", schema=schema)
|
|
||||||
|
|
||||||
self._initialized = True
|
|
||||||
```
|
|
||||||
|
|
||||||
- **`store_memory()`**: When storing a new memory, this method generates a unique ID and timestamp for the memory content. If no summary is provided, it automatically generates a simple summary, then uses the pre-loaded model to convert the content into a vector, and finally stores all information (ID, content, summary, tags, timestamp, category, importance, vector) in the LanceDB table.
|
|
||||||
|
|
||||||
```python
|
|
||||||
async def store_memory(
|
|
||||||
self,
|
|
||||||
content: str,
|
|
||||||
summary: Optional[str] = None,
|
|
||||||
tags: Optional[List[str]] = None,
|
|
||||||
category: str = "general",
|
|
||||||
importance: int = 5,
|
|
||||||
) -> str:
|
|
||||||
await self.initialize()
|
|
||||||
|
|
||||||
memory_id = str(uuid.uuid4())
|
|
||||||
timestamp = datetime.now(timezone.utc)
|
|
||||||
|
|
||||||
if not summary:
|
|
||||||
summary = content[:100] + "..." if len(content) > 100 else content
|
|
||||||
|
|
||||||
embedding = self._generate_embedding(content)
|
|
||||||
|
|
||||||
data = [
|
|
||||||
{
|
|
||||||
"id": memory_id,
|
|
||||||
"content": content,
|
|
||||||
"summary": summary,
|
|
||||||
"tags": tags or [],
|
|
||||||
"timestamp": timestamp,
|
|
||||||
"category": category,
|
|
||||||
"importance": importance,
|
|
||||||
"vector": embedding,
|
|
||||||
}
|
|
||||||
]
|
|
||||||
|
|
||||||
self.table.add(data)
|
|
||||||
|
|
||||||
return memory_id
|
|
||||||
```
|
|
||||||
|
|
||||||
- **`search_memories()`**: This is the key to implementing RAG. When a query is made, this method converts the query text into a vector as well, then performs vector similarity search in LanceDB to find the most relevant memories. It also supports filtering by category and importance.
|
|
||||||
|
|
||||||
```python
|
|
||||||
async def search_memories(
|
|
||||||
self,
|
|
||||||
query: str,
|
|
||||||
limit: int = 10,
|
|
||||||
category: Optional[str] = None,
|
|
||||||
min_importance: Optional[int] = None,
|
|
||||||
) -> List[Dict[str, Any]]:
|
|
||||||
await self.initialize()
|
|
||||||
query_embedding = self._generate_embedding(query)
|
|
||||||
|
|
||||||
search_query = self.table.search(query_embedding)
|
|
||||||
|
|
||||||
if limit:
|
|
||||||
search_query = search_query.limit(limit)
|
|
||||||
|
|
||||||
filters = []
|
|
||||||
if category:
|
|
||||||
filters.append(f"category = '{category}'")
|
|
||||||
if min_importance is not None:
|
|
||||||
filters.append(f"importance >= {min_importance}")
|
|
||||||
|
|
||||||
if filters:
|
|
||||||
filter_str = " AND ".join(filters)
|
|
||||||
search_query = search_query.where(filter_str)
|
|
||||||
|
|
||||||
results = search_query.to_pandas()
|
|
||||||
|
|
||||||
memories = []
|
|
||||||
for _, row in results.iterrows():
|
|
||||||
memory = {
|
|
||||||
"id": row["id"],
|
|
||||||
"content": row["content"],
|
|
||||||
"summary": row["summary"],
|
|
||||||
"tags": row["tags"].tolist(),
|
|
||||||
"timestamp": row["timestamp"],
|
|
||||||
"category": row["category"],
|
|
||||||
"importance": int(row["importance"]),
|
|
||||||
"similarity_score": row.get(
|
|
||||||
"_distance", 0.0
|
|
||||||
),
|
|
||||||
}
|
|
||||||
memories.append(memory)
|
|
||||||
|
|
||||||
return memories
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2.2 MCP Server and Tools
|
|
||||||
|
|
||||||
We use `FastMCP` to quickly build an MCP server and expose `MemoryStore` functionality as tools that large language models can call through the `@mcp.tool()` decorator.
|
|
||||||
|
|
||||||
- **`store_memory`**: **Take notes!** Store a memory.
|
|
||||||
- **`search_memories`**: **Let me think...** Search for relevant memories based on query content.
|
|
||||||
- **`get_memory`**: **Find by reference!** Retrieve a specific memory by ID.
|
|
||||||
- **`list_categories`**: **Organize by category!** List all memory categories.
|
|
||||||
- **`get_memory_stats`**: **Memory inventory!** Get statistics about the memory store, such as total count, counts by category, etc.
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Initialize memory store
|
|
||||||
memory_store = MemoryStore()
|
|
||||||
|
|
||||||
# Create MCP server
|
|
||||||
mcp = FastMCP("RAG-based Memory MCP Server")
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def store_memory(
|
|
||||||
content: str,
|
|
||||||
summary: Optional[str] = None,
|
|
||||||
tags: Optional[str] = None,
|
|
||||||
category: str = "general",
|
|
||||||
importance: int = 5,
|
|
||||||
) -> Dict[str, str]:
|
|
||||||
"""
|
|
||||||
Store content in memory.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
content: The content to store
|
|
||||||
summary: Optional summary (auto-generated if not provided)
|
|
||||||
tags: Comma-separated tags
|
|
||||||
category: Memory category (default: general)
|
|
||||||
importance: Importance level 1-10 (default: 5)
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# Parse tags if provided
|
|
||||||
tag_list = [tag.strip() for tag in tags.split(",")] if tags else []
|
|
||||||
|
|
||||||
memory_id = await memory_store.store_memory(
|
|
||||||
content=content,
|
|
||||||
summary=summary,
|
|
||||||
tags=tag_list,
|
|
||||||
category=category,
|
|
||||||
importance=importance,
|
|
||||||
)
|
|
||||||
|
|
||||||
return {
|
|
||||||
"status": "success",
|
|
||||||
"memory_id": memory_id,
|
|
||||||
"message": f"Memory stored successfully with ID: {memory_id}",
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Failed to store memory: {str(e)}"}
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def search_memories(
|
|
||||||
query: str,
|
|
||||||
limit: int = 10,
|
|
||||||
category: Optional[str] = None,
|
|
||||||
min_importance: Optional[int] = None,
|
|
||||||
) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
Search stored memories using semantic similarity.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
query: Search query
|
|
||||||
limit: Maximum number of results (default: 10)
|
|
||||||
category: Filter by category
|
|
||||||
min_importance: Minimum importance level
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
memories = await memory_store.search_memories(
|
|
||||||
query=query, limit=limit, category=category, min_importance=min_importance
|
|
||||||
)
|
|
||||||
|
|
||||||
return {
|
|
||||||
"status": "success",
|
|
||||||
"query": query,
|
|
||||||
"total_results": len(memories),
|
|
||||||
"memories": memories,
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Search failed: {str(e)}"}
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def get_memory(memory_id: str) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
Retrieve a specific memory by its ID.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
memory_id: The unique identifier of the memory
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
memory = await memory_store.get_memory_by_id(memory_id)
|
|
||||||
|
|
||||||
if memory:
|
|
||||||
return {"status": "success", "memory": memory}
|
|
||||||
else:
|
|
||||||
return {
|
|
||||||
"status": "error",
|
|
||||||
"message": f"Memory with ID {memory_id} not found",
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Failed to retrieve memory: {str(e)}"}
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def list_categories() -> Dict[str, Any]:
|
|
||||||
try:
|
|
||||||
categories = await memory_store.list_categories()
|
|
||||||
return {"status": "success", "categories": categories}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Failed to list categories: {str(e)}"}
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def get_memory_stats() -> Dict[str, Any]:
|
|
||||||
try:
|
|
||||||
stats = await memory_store.get_stats()
|
|
||||||
return {"status": "success", "stats": stats}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Failed to get stats: {str(e)}"}
|
|
||||||
```
|
|
||||||
|
|
||||||
The server startup code is at the end of `server.py`, which first initializes the `MemoryStore`, then runs the MCP server.
|
|
||||||
|
|
||||||
```python
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# Initialize memory store on startup
|
|
||||||
async def init_memory():
|
|
||||||
await memory_store.initialize()
|
|
||||||
|
|
||||||
# Run initialization
|
|
||||||
asyncio.run(init_memory())
|
|
||||||
|
|
||||||
# Run MCP server
|
|
||||||
mcp.run()
|
|
||||||
```
|
|
||||||
|
|
||||||
## 3. Debugging with [openmcp](https://github.com/LSTM-Kirigaya/openmcp-client)
|
|
||||||
|
|
||||||
### 3.1 Adding Workspace Connection
|
|
||||||
|
|
||||||
Next, we'll debug using the [openmcp](https://github.com/LSTM-Kirigaya/openmcp-client) plugin. First, let's test if we can connect successfully. Here we choose `stdio`, set the working path to the project directory, then click `Connect`. In the log panel on the right, we can see that we've successfully connected.
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_1.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
### 3.2 Testing Tools
|
|
||||||
|
|
||||||
After successful connection, let's test if the tools work properly.
|
|
||||||
|
|
||||||
1. **Store a little secret**: Create a new `Tool` tab and select the `store_memory` tool. For example, we input:
|
|
||||||
- `content`: `Xiao Ming's birthday is 2025.6.18`
|
|
||||||
- `category`: `birthday`
|
|
||||||
- `importance`: `8`
|
|
||||||
|
|
||||||
Click `Execute`, and if successful, it will return the stored memory ID, such as `bcc30f6c-979c-46d1-b34a-cd1a09242106`
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_2.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
2. **Retrieve a specific memory by ID**:
|
|
||||||
After successful storage, we use the returned memory ID `bcc30f6c-979c-46d1-b34a-cd1a09242106`, select the `get_memory` tool, and test if we can retrieve it from `LanceDB`.
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_3.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
3. **List current memory categories**:
|
|
||||||
We call the `list_categories` tool to view all current memory categories. Since we only added one memory with the `birthday` category, the result should only contain this category.
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_4.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
4. **Get memory statistics**:
|
|
||||||
Next, we use the `get_memory_stats` tool to get statistical information about the memory store, such as the total number of memories and the count of memories in each category.
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_5.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
### 3.3 Large Language Model Interaction Testing
|
|
||||||
|
|
||||||
We intentionally "skipped" testing one tool `search_memories` above, saving it for the large language model interaction testing. Enter the interaction testing page (remember to set up the LLM's `api_key` and `base_url` first according to the [Connect to LLM tutorial](https://kirigaya.cn/openmcp/zh/plugin-tutorial/usage/connect-llm.html)). We can first disable all other tools, keeping only the `search_memories` tool:
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_6.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
Then, we casually ask:
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_7.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
Great! The large language model successfully helped me recall my friend Xiao Ming's birthday. Cheers!
|
|
@ -74,14 +74,6 @@ const contributors = [
|
|||||||
links: [
|
links: [
|
||||||
{ icon: 'github', link: 'https://github.com/ZYD045692' },
|
{ icon: 'github', link: 'https://github.com/ZYD045692' },
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
avatar: 'https://avatars.githubusercontent.com/u/81767213?v=4',
|
|
||||||
name: 'Zhenyu (Dormiveglia-elf)',
|
|
||||||
title: 'Developer',
|
|
||||||
links: [
|
|
||||||
{ icon: 'github', link: 'https://github.com/Dormiveglia-elf' },
|
|
||||||
]
|
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
</script>
|
</script>
|
||||||
|
@ -12,7 +12,7 @@ next:
|
|||||||
- [python 实现基于 blender 的 mcp (STDIO)](./python-blender-stdio)
|
- [python 实现基于 blender 的 mcp (STDIO)](./python-blender-stdio)
|
||||||
- [python 实现 cadence EDA 的 mcp (STDIO)](./python-cadence-stdio)
|
- [python 实现 cadence EDA 的 mcp (STDIO)](./python-cadence-stdio)
|
||||||
- 基于 ffmpeg mcp 实现通过对话的视频剪辑
|
- 基于 ffmpeg mcp 实现通过对话的视频剪辑
|
||||||
- [python 实现基于 RAG 的记忆存储 MCP 服务器](./python-rag_memo-stdio.md)
|
- 基于 rag mcp 实现知识库的注入
|
||||||
- 实现 Stable Diffusion 的 MCP 服务器
|
- 实现 Stable Diffusion 的 MCP 服务器
|
||||||
|
|
||||||
## Nodejs
|
## Nodejs
|
||||||
|
@ -1,382 +0,0 @@
|
|||||||
# Python 实现基于 RAG 的记忆存储 MCP 服务器
|
|
||||||
|
|
||||||
[本期教程的代码](https://github.com/Dormiveglia-elf/rag_memo_mcp)
|
|
||||||
|
|
||||||
## 前言
|
|
||||||
|
|
||||||
本篇教程,我们将演示如何使用 Python 构建一个简易的基于 RAG (Retrieval-Augmented Generation) 的长期记忆存储 MCP 服务器, 并通过 [openmcp](https://github.com/LSTM-Kirigaya/openmcp-client) 插件进行调试。 实现完成后,我们能够通过与大模型进行自然语言交互,轻松地存储、检索和管理我们的记忆,而无需编写任何特定的查询代码。
|
|
||||||
|
|
||||||
## 1. 准备
|
|
||||||
|
|
||||||
项目结构如下:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
📦rag_memo_mcp
|
|
||||||
┣ 📂memory_db/ # LanceDB 数据库文件,初始化时会创建
|
|
||||||
┣ 📜server.py # MCP 服务器实现
|
|
||||||
┣ 📜pyproject.toml # 项目配置文件
|
|
||||||
┣ 📜uv.lock # uv lockfile
|
|
||||||
┗ ...
|
|
||||||
```
|
|
||||||
|
|
||||||
首先,我们来准备运行环境。本项目推荐使用 [uv](https://github.com/astral-sh/uv)。(`uv` 是一个速度快得飞起的 Python 包管理器,用过都说好。当然,如果你是 `pip` 或者其他包管理器的忠实粉丝,也完全没问题)
|
|
||||||
```bash
|
|
||||||
# 首先下载 uv (Windows)
|
|
||||||
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
|
||||||
# 或者 (macOS/Linux)
|
|
||||||
# curl -LsSf https://astral.sh/uv/install.sh | sh
|
|
||||||
```
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# 项目初始化
|
|
||||||
uv init rag_memo_mcp
|
|
||||||
cd rag_memo_mcp
|
|
||||||
# 建议创建一个虚拟环境
|
|
||||||
uv venv
|
|
||||||
# 激活虚拟环境 (Windows)
|
|
||||||
.venv\Scripts\activate
|
|
||||||
# 或者 (macOS/Linux)
|
|
||||||
# source .venv/bin/activate
|
|
||||||
|
|
||||||
# 安装依赖
|
|
||||||
uv add "mcp[cli]" lancedb pandas sentence-transformers
|
|
||||||
```
|
|
||||||
|
|
||||||
## 2. 理解服务实现
|
|
||||||
|
|
||||||
与需要预先安装和配置的传统数据库不同,本项目的核心 `MemoryStore` 使用 [LanceDB](https://lancedb.github.io/),这是一个向量数据库,它会在服务器首次启动时自动在 `memory_db` 目录下创建并初始化,无需额外配置。
|
|
||||||
|
|
||||||
让我们深入 `server.py` 来理解其实现细节。
|
|
||||||
|
|
||||||
### 2.1 MemoryStore 核心类
|
|
||||||
|
|
||||||
`MemoryStore` 类是记忆存储和检索功能的核心。
|
|
||||||
```python
|
|
||||||
class MemoryStore:
|
|
||||||
```
|
|
||||||
|
|
||||||
- **`initialize()`**: 这个方法负责初始化。它会连接到 LanceDB 数据库(如果不存在则创建),定义记忆表的 schema,并默认加载 `all-MiniLM-L6-v2` 用于将文本内容生成向量嵌入。
|
|
||||||
```python
|
|
||||||
def __init__(self, db_path: str = "./memory_db"):
|
|
||||||
self.db_path = db_path
|
|
||||||
self.db = None
|
|
||||||
self.table = None
|
|
||||||
self.encoder = None
|
|
||||||
self._initialized = False
|
|
||||||
|
|
||||||
async def initialize(self):
|
|
||||||
if self._initialized:
|
|
||||||
return
|
|
||||||
|
|
||||||
self.encoder = SentenceTransformer("all-MiniLM-L6-v2")
|
|
||||||
|
|
||||||
self.db = lancedb.connect(self.db_path)
|
|
||||||
|
|
||||||
schema = pa.schema(
|
|
||||||
[
|
|
||||||
pa.field("id", pa.string()),
|
|
||||||
pa.field("content", pa.string()),
|
|
||||||
pa.field("summary", pa.string()),
|
|
||||||
pa.field("tags", pa.list_(pa.string())),
|
|
||||||
pa.field("timestamp", pa.timestamp("us")),
|
|
||||||
pa.field("category", pa.string()),
|
|
||||||
pa.field("importance", pa.int32()),
|
|
||||||
pa.field(
|
|
||||||
"vector", pa.list_(pa.float32(), 384)
|
|
||||||
),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
|
||||||
self.table = self.db.open_table("memories")
|
|
||||||
except Exception:
|
|
||||||
self.table = self.db.create_table("memories", schema=schema)
|
|
||||||
|
|
||||||
self._initialized = True
|
|
||||||
```
|
|
||||||
|
|
||||||
- **`store_memory()`**: 当需要存储一条新记忆时,此方法会被调用。它会为记忆内容生成一个唯一的ID和时间戳,如果未提供摘要,则自动生成一个简单的摘要,然后使用预加载的模型将内容转换为向量,最后将所有信息(ID, 内容, 摘要, 标签, 时间戳, 类别, 重要性, 向量)存入 LanceDB 表中。
|
|
||||||
```python
|
|
||||||
async def store_memory(
|
|
||||||
self,
|
|
||||||
content: str,
|
|
||||||
summary: Optional[str] = None,
|
|
||||||
tags: Optional[List[str]] = None,
|
|
||||||
category: str = "general",
|
|
||||||
importance: int = 5,
|
|
||||||
) -> str:
|
|
||||||
await self.initialize()
|
|
||||||
|
|
||||||
memory_id = str(uuid.uuid4())
|
|
||||||
timestamp = datetime.now(timezone.utc)
|
|
||||||
|
|
||||||
if not summary:
|
|
||||||
summary = content[:100] + "..." if len(content) > 100 else content
|
|
||||||
|
|
||||||
embedding = self._generate_embedding(content)
|
|
||||||
|
|
||||||
data = [
|
|
||||||
{
|
|
||||||
"id": memory_id,
|
|
||||||
"content": content,
|
|
||||||
"summary": summary,
|
|
||||||
"tags": tags or [],
|
|
||||||
"timestamp": timestamp,
|
|
||||||
"category": category,
|
|
||||||
"importance": importance,
|
|
||||||
"vector": embedding,
|
|
||||||
}
|
|
||||||
]
|
|
||||||
|
|
||||||
self.table.add(data)
|
|
||||||
|
|
||||||
return memory_id
|
|
||||||
```
|
|
||||||
|
|
||||||
- **`search_memories()`**: 这是实现 RAG 的关键。当提出一个查询时,此方法会将查询文本同样转换为向量,然后在 LanceDB 中执行向量相似度搜索,以找到最相关的记忆。它还支持按类别和重要性进行过滤。
|
|
||||||
```python
|
|
||||||
async def search_memories(
|
|
||||||
self,
|
|
||||||
query: str,
|
|
||||||
limit: int = 10,
|
|
||||||
category: Optional[str] = None,
|
|
||||||
min_importance: Optional[int] = None,
|
|
||||||
) -> List[Dict[str, Any]]:
|
|
||||||
await self.initialize()
|
|
||||||
query_embedding = self._generate_embedding(query)
|
|
||||||
|
|
||||||
search_query = self.table.search(query_embedding)
|
|
||||||
|
|
||||||
if limit:
|
|
||||||
search_query = search_query.limit(limit)
|
|
||||||
|
|
||||||
filters = []
|
|
||||||
if category:
|
|
||||||
filters.append(f"category = '{category}'")
|
|
||||||
if min_importance is not None:
|
|
||||||
filters.append(f"importance >= {min_importance}")
|
|
||||||
|
|
||||||
if filters:
|
|
||||||
filter_str = " AND ".join(filters)
|
|
||||||
search_query = search_query.where(filter_str)
|
|
||||||
|
|
||||||
results = search_query.to_pandas()
|
|
||||||
|
|
||||||
memories = []
|
|
||||||
for _, row in results.iterrows():
|
|
||||||
memory = {
|
|
||||||
"id": row["id"],
|
|
||||||
"content": row["content"],
|
|
||||||
"summary": row["summary"],
|
|
||||||
"tags": row["tags"].tolist(),
|
|
||||||
"timestamp": row["timestamp"],
|
|
||||||
"category": row["category"],
|
|
||||||
"importance": int(row["importance"]),
|
|
||||||
"similarity_score": row.get(
|
|
||||||
"_distance", 0.0
|
|
||||||
),
|
|
||||||
}
|
|
||||||
memories.append(memory)
|
|
||||||
|
|
||||||
return memories
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2.2 MCP 服务器与工具
|
|
||||||
|
|
||||||
我们使用 `FastMCP` 来快速构建一个 MCP 服务器,并通过 `@mcp.tool()` 装饰器将 `MemoryStore` 的功能暴露为大模型可以调用的工具。
|
|
||||||
|
|
||||||
- **`store_memory`**: **记笔记!** 存储一条记忆。
|
|
||||||
- **`search_memories`**: **让我想想...** 根据查询内容搜索相关记忆。
|
|
||||||
- **`get_memory`**: **按图索骥!** 根据 ID 精确检索某条记忆。
|
|
||||||
- **`list_categories`**: **分门别类!** 列出所有记忆的分类。
|
|
||||||
- **`get_memory_stats`**: **记忆盘点!** 获取关于记忆库的统计信息,如总数、各分类数量等。
|
|
||||||
|
|
||||||
```python
|
|
||||||
# 初始化记忆存储
|
|
||||||
memory_store = MemoryStore()
|
|
||||||
|
|
||||||
# 创建 MCP 服务器
|
|
||||||
mcp = FastMCP("RAG-based Memory MCP Server")
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def store_memory(
|
|
||||||
content: str,
|
|
||||||
summary: Optional[str] = None,
|
|
||||||
tags: Optional[str] = None,
|
|
||||||
category: str = "general",
|
|
||||||
importance: int = 5,
|
|
||||||
) -> Dict[str, str]:
|
|
||||||
"""
|
|
||||||
Store content in memory.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
content: The content to store
|
|
||||||
summary: Optional summary (auto-generated if not provided)
|
|
||||||
tags: Comma-separated tags
|
|
||||||
category: Memory category (default: general)
|
|
||||||
importance: Importance level 1-10 (default: 5)
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# Parse tags if provided
|
|
||||||
tag_list = [tag.strip() for tag in tags.split(",")] if tags else []
|
|
||||||
|
|
||||||
memory_id = await memory_store.store_memory(
|
|
||||||
content=content,
|
|
||||||
summary=summary,
|
|
||||||
tags=tag_list,
|
|
||||||
category=category,
|
|
||||||
importance=importance,
|
|
||||||
)
|
|
||||||
|
|
||||||
return {
|
|
||||||
"status": "success",
|
|
||||||
"memory_id": memory_id,
|
|
||||||
"message": f"Memory stored successfully with ID: {memory_id}",
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Failed to store memory: {str(e)}"}
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def search_memories(
|
|
||||||
query: str,
|
|
||||||
limit: int = 10,
|
|
||||||
category: Optional[str] = None,
|
|
||||||
min_importance: Optional[int] = None,
|
|
||||||
) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
Search stored memories using semantic similarity.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
query: Search query
|
|
||||||
limit: Maximum number of results (default: 10)
|
|
||||||
category: Filter by category
|
|
||||||
min_importance: Minimum importance level
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
memories = await memory_store.search_memories(
|
|
||||||
query=query, limit=limit, category=category, min_importance=min_importance
|
|
||||||
)
|
|
||||||
|
|
||||||
return {
|
|
||||||
"status": "success",
|
|
||||||
"query": query,
|
|
||||||
"total_results": len(memories),
|
|
||||||
"memories": memories,
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Search failed: {str(e)}"}
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def get_memory(memory_id: str) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
Retrieve a specific memory by its ID.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
memory_id: The unique identifier of the memory
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
memory = await memory_store.get_memory_by_id(memory_id)
|
|
||||||
|
|
||||||
if memory:
|
|
||||||
return {"status": "success", "memory": memory}
|
|
||||||
else:
|
|
||||||
return {
|
|
||||||
"status": "error",
|
|
||||||
"message": f"Memory with ID {memory_id} not found",
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Failed to retrieve memory: {str(e)}"}
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def list_categories() -> Dict[str, Any]:
|
|
||||||
try:
|
|
||||||
categories = await memory_store.list_categories()
|
|
||||||
return {"status": "success", "categories": categories}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Failed to list categories: {str(e)}"}
|
|
||||||
|
|
||||||
|
|
||||||
@mcp.tool()
|
|
||||||
async def get_memory_stats() -> Dict[str, Any]:
|
|
||||||
try:
|
|
||||||
stats = await memory_store.get_stats()
|
|
||||||
return {"status": "success", "stats": stats}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": f"Failed to get stats: {str(e)}"}
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
服务器的启动代码位于 `server.py` 的末尾,它首先初始化 `MemoryStore`,然后运行 MCP 服务器。
|
|
||||||
|
|
||||||
```python
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# 在启动时初始化记忆存储
|
|
||||||
async def init_memory():
|
|
||||||
await memory_store.initialize()
|
|
||||||
|
|
||||||
# 运行初始化
|
|
||||||
asyncio.run(init_memory())
|
|
||||||
|
|
||||||
# 运行 MCP 服务器
|
|
||||||
mcp.run()
|
|
||||||
```
|
|
||||||
|
|
||||||
## 3. 通过 [openmcp](https://github.com/LSTM-Kirigaya/openmcp-client) 来进行调试
|
|
||||||
### 3.1 添加工作区连接
|
|
||||||
|
|
||||||
接下来,我们通过 [openmcp](https://github.com/LSTM-Kirigaya/openmcp-client) 插件进行调试。首先测试是否能连接成功,这里选择 `stdio`,工作路径设置为项目所在的目录,然后点击 `Connect`。右边的日志栏里可以看到我们已经连接成功。
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_1.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
### 3.2 测试工具
|
|
||||||
|
|
||||||
连接成功后,让我们先测试一下工具是否工作正常。
|
|
||||||
|
|
||||||
1. **存个小秘密**: 新建一个 `Tool` 标签页,选择 `store_memory` 工具。例如我们输入:
|
|
||||||
- `content`: `小明的生日是 2025.6.18`
|
|
||||||
- `category`: `birthday`
|
|
||||||
- `importance`: `8`
|
|
||||||
|
|
||||||
点击 `Execute`,如果成功会返回存储的记忆 ID,比如这里返回 `bcc30f6c-979c-46d1-b34a-cd1a09242106`
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_2.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
2. **根据 ID 精确检索某条记忆**:
|
|
||||||
存储成功后,我们根据返回的记忆 ID `bcc30f6c-979c-46d1-b34a-cd1a09242106`,选择 `get_memory` 工具,测试是否能够从 `Lancedb` 里面检索出来。
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_3.png" style="width: 80%;"/>
|
|
||||||
|
|
||||||
3. **列出目前的记忆分类**:
|
|
||||||
我们调用 `list_categories` 工具来查看当前所有记忆的分类。由于我们只添加了一个 `birthday` 分类的记忆,所以返回结果中应该只包含这个分类。
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_4.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
4. **获取记忆统计数据**:
|
|
||||||
接着,我们使用 `get_memory_stats` 工具来获取记忆库的统计信息,例如总共有多少条记忆,以及每个分类下的记忆数量。
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_5.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
### 3.3 大模型交互测试
|
|
||||||
上面我们"遗漏"了一个工具 `search_memories` 没有测试,其实是特意把它留给了大模型交互测试。进入交互测试页面(记得事先参照[连接大模型教程](https://kirigaya.cn/openmcp/zh/plugin-tutorial/usage/connect-llm.html)设置好大模型的 `api_key` 和 `base_url`),我们可以先把其他的工具都取消配备,只保留 `search_memories` 这一个工具:
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_6.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
然后,我们假装不经意地问一句:
|
|
||||||
|
|
||||||
<div align=center>
|
|
||||||
<img src="https://raw.githubusercontent.com/Dormiveglia-elf/rag_memo_mcp/main/images/rag_memo_mcp_7.png" style="width: 80%;"/>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
好! 大模型成功帮助我召回了我的朋友小明的生日, Cheers!
|
|
@ -74,14 +74,6 @@ const contributors = [
|
|||||||
links: [
|
links: [
|
||||||
{ icon: 'github', link: 'https://github.com/ZYD045692' },
|
{ icon: 'github', link: 'https://github.com/ZYD045692' },
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
avatar: 'https://avatars.githubusercontent.com/u/81767213?v=4',
|
|
||||||
name: 'Zhenyu (Dormiveglia-elf)',
|
|
||||||
title: 'Developer',
|
|
||||||
links: [
|
|
||||||
{ icon: 'github', link: 'https://github.com/Dormiveglia-elf' },
|
|
||||||
]
|
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
</script>
|
</script>
|
||||||
|
Loading…
x
Reference in New Issue
Block a user