vhdl-parser/vhdl_libraries/ieee2008/math_complex-body.vhdl
2024-10-04 23:29:34 +08:00

1603 lines
51 KiB
VHDL

-- -----------------------------------------------------------------
--
-- Copyright 2019 IEEE P1076 WG Authors
--
-- See the LICENSE file distributed with this work for copyright and
-- licensing information and the AUTHORS file.
--
-- This file to you under the Apache License, Version 2.0 (the "License").
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
-- implied. See the License for the specific language governing
-- permissions and limitations under the License.
--
-- Title : Standard VHDL Mathematical Packages
-- : (MATH_COMPLEX package body)
-- :
-- Library : This package shall be compiled into a library
-- : symbolically named IEEE.
-- :
-- Developers: IEEE DASC VHDL Mathematical Packages Working Group
-- :
-- Purpose : This package defines a standard for designers to use in
-- : describing VHDL models that make use of common COMPLEX
-- : constants and common COMPLEX mathematical functions and
-- : operators.
-- :
-- Limitation: The values generated by the functions in this package
-- : may vary from platform to platform, and the precision
-- : of results is only guaranteed to be the minimum required
-- : by IEEE Std 1076-2008.
-- :
-- Note : This package may be modified to include additional data
-- : required by tools, but it must in no way change the
-- : external interfaces or simulation behavior of the
-- : description. It is permissible to add comments and/or
-- : attributes to the package declarations, but not to change
-- : or delete any original lines of the package declaration.
-- : The package body may be changed only in accordance with
-- : the terms of Clause 16 of this standard.
-- :
-- --------------------------------------------------------------------
-- $Revision: 1220 $
-- $Date: 2008-04-10 17:16:09 +0930 (Thu, 10 Apr 2008) $
-- --------------------------------------------------------------------
use WORK.MATH_REAL.all;
package body MATH_COMPLEX is
--
-- Equality and Inequality Operators for COMPLEX_POLAR
--
function "=" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR ) return BOOLEAN
is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns FALSE on error
begin
-- Check validity of input arguments
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in =(L,R)"
severity ERROR;
return FALSE;
end if;
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_PI in =(L,R)"
severity ERROR;
return FALSE;
end if;
-- Get special values
if ( L.MAG = 0.0 and R.MAG = 0.0 ) then
return TRUE;
end if;
-- Get value for general case
if ( L.MAG = R.MAG and L.ARG = R.ARG ) then
return TRUE;
end if;
return FALSE;
end function "=";
function "/=" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR ) return BOOLEAN
is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns FALSE on error
begin
-- Check validity of input arguments
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in /=(L,R)"
severity ERROR;
return FALSE;
end if;
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_PI in /=(L,R)"
severity ERROR;
return FALSE;
end if;
-- Get special values
if ( L.MAG = 0.0 and R.MAG = 0.0 ) then
return FALSE;
end if;
-- Get value for general case
if ( L.MAG = R.MAG and L.ARG = R.ARG ) then
return FALSE;
end if;
return TRUE;
end function "/=";
--
-- Other Functions Start Here
--
function CMPLX(X: in REAL; Y: in REAL := 0.0 ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(X, Y);
end function CMPLX;
function GET_PRINCIPAL_VALUE(X: in REAL ) return PRINCIPAL_VALUE is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
variable TEMP: REAL;
begin
-- Check if already a principal value
if ( X > -MATH_PI and X <= MATH_PI ) then
return PRINCIPAL_VALUE'(X);
end if;
-- Get principal value
TEMP := X;
while ( TEMP <= -MATH_PI ) loop
TEMP := TEMP + MATH_2_PI;
end loop;
while (TEMP > MATH_PI ) loop
TEMP := TEMP - MATH_2_PI;
end loop;
return PRINCIPAL_VALUE'(TEMP);
end function GET_PRINCIPAL_VALUE;
function COMPLEX_TO_POLAR(Z: in COMPLEX ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
variable TEMP: REAL;
begin
-- Get value for special cases
if ( Z.RE = 0.0 ) then
if ( Z.IM = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
elsif ( Z.IM > 0.0 ) then
return COMPLEX_POLAR'(Z.IM, MATH_PI_OVER_2);
else
return COMPLEX_POLAR'(-Z.IM, -MATH_PI_OVER_2);
end if;
end if;
if ( Z.IM = 0.0 ) then
if ( Z.RE = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
elsif ( Z.RE > 0.0 ) then
return COMPLEX_POLAR'(Z.RE, 0.0);
else
return COMPLEX_POLAR'(-Z.RE, MATH_PI);
end if;
end if;
-- Get principal value for general case
TEMP := ARCTAN(Z.IM, Z.RE);
return COMPLEX_POLAR'(SQRT(Z.RE*Z.RE + Z.IM*Z.IM),
GET_PRINCIPAL_VALUE(TEMP));
end function COMPLEX_TO_POLAR;
function POLAR_TO_COMPLEX(Z: in COMPLEX_POLAR ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns MATH_CZERO on error
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in POLAR_TO_COMPLEX(Z)"
severity ERROR;
return MATH_CZERO;
end if;
-- Get value for general case
return COMPLEX'( Z.MAG*COS(Z.ARG), Z.MAG*SIN(Z.ARG) );
end function POLAR_TO_COMPLEX;
function "ABS"(Z: in COMPLEX ) return POSITIVE_REAL is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) ABS(Z) = SQRT(Z.RE*Z.RE + Z.IM*Z.IM)
begin
-- Get value for general case
return POSITIVE_REAL'(SQRT(Z.RE*Z.RE + Z.IM*Z.IM));
end function "ABS";
function "ABS"(Z: in COMPLEX_POLAR ) return POSITIVE_REAL is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) ABS(Z) = Z.MAG
-- b) Returns 0.0 on error
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in ABS(Z)"
severity ERROR;
return 0.0;
end if;
-- Get value for general case
return Z.MAG;
end function "ABS";
function ARG(Z: in COMPLEX ) return PRINCIPAL_VALUE is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) ARG(Z) = ARCTAN(Z.IM, Z.RE)
variable ZTEMP : COMPLEX_POLAR;
begin
-- Get value for general case
ZTEMP := COMPLEX_TO_POLAR(Z);
return ZTEMP.ARG;
end function ARG;
function ARG(Z: in COMPLEX_POLAR ) return PRINCIPAL_VALUE is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) ARG(Z) = Z.ARG
-- b) Returns 0.0 on error
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in ARG(Z)"
severity ERROR;
return 0.0;
end if;
-- Get value for general case
return Z.ARG;
end function ARG;
function "-" (Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns -x -jy for Z = x + jy
begin
-- Get value for general case
return COMPLEX'(-Z.RE, -Z.IM);
end function "-";
function "-" (Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns (Z.MAG, Z.ARG + MATH_PI)
-- b) Returns Z on error
variable TEMP: REAL;
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in -(Z)"
severity ERROR;
return Z;
end if;
-- Get principal value for general case
TEMP := REAL'(Z.ARG) + MATH_PI;
return COMPLEX_POLAR'(Z.MAG, GET_PRINCIPAL_VALUE(TEMP));
end function "-";
function CONJ (Z: in COMPLEX) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns x - jy for Z = x + jy
begin
-- Get value for general case
return COMPLEX'(Z.RE, -Z.IM);
end function CONJ;
function CONJ (Z: in COMPLEX_POLAR) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX conjugate (Z.MAG, -Z.ARG)
-- b) Returns Z on error
--
variable TEMP: PRINCIPAL_VALUE;
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in CONJ(Z)"
severity ERROR;
return Z;
end if;
-- Get principal value for general case
if ( Z.ARG = MATH_PI or Z.ARG = 0.0 ) then
TEMP := Z.ARG;
else
TEMP := -Z.ARG;
end if;
return COMPLEX_POLAR'(Z.MAG, TEMP);
end function CONJ;
function SQRT(Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
variable ZTEMP : COMPLEX_POLAR;
variable ZOUT : COMPLEX;
variable TMAG : REAL;
variable TARG : REAL;
begin
-- Get value for special cases
if ( Z = MATH_CZERO ) then
return MATH_CZERO;
end if;
-- Get value for general case
ZTEMP := COMPLEX_TO_POLAR(Z);
TMAG := SQRT(ZTEMP.MAG);
TARG := 0.5*ZTEMP.ARG;
if ( COS(TARG) > 0.0 ) then
ZOUT.RE := TMAG*COS(TARG);
ZOUT.IM := TMAG*SIN(TARG);
return ZOUT;
end if;
if ( COS(TARG) < 0.0 ) then
ZOUT.RE := TMAG*COS(TARG + MATH_PI);
ZOUT.IM := TMAG*SIN(TARG + MATH_PI);
return ZOUT;
end if;
if ( SIN(TARG) > 0.0 ) then
ZOUT.RE := 0.0;
ZOUT.IM := TMAG*SIN(TARG);
return ZOUT;
end if;
ZOUT.RE := 0.0;
ZOUT.IM := TMAG*SIN(TARG + MATH_PI);
return ZOUT;
end function SQRT;
function SQRT(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns Z on error
variable ZOUT : COMPLEX_POLAR;
variable TMAG : REAL;
variable TARG : REAL;
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in SQRT(Z)"
severity ERROR;
return Z;
end if;
-- Get value for special cases
if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
return Z;
end if;
-- Get principal value for general case
TMAG := SQRT(Z.MAG);
TARG := 0.5*Z.ARG;
ZOUT.MAG := POSITIVE_REAL'(TMAG);
if ( COS(TARG) < 0.0 ) then
TARG := TARG + MATH_PI;
end if;
if ( (COS(TARG) = 0.0) and (SIN(TARG) < 0.0) ) then
TARG := TARG + MATH_PI;
end if;
ZOUT.ARG := GET_PRINCIPAL_VALUE(TARG);
return ZOUT;
end function SQRT;
function EXP(Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
variable TEMP: REAL;
begin
-- Get value for special cases
if ( Z = MATH_CZERO ) then
return MATH_CBASE_1;
end if;
if ( Z.RE = 0.0 ) then
if ( Z.IM = MATH_PI or Z.IM = -MATH_PI ) then
return COMPLEX'(-1.0, 0.0);
end if;
if ( Z.IM = MATH_PI_OVER_2 ) then
return MATH_CBASE_J;
end if;
if ( Z.IM = -MATH_PI_OVER_2 ) then
return COMPLEX'(0.0, -1.0);
end if;
end if;
-- Get value for general case
TEMP := EXP(Z.RE);
return COMPLEX'(TEMP*COS(Z.IM), TEMP*SIN(Z.IM));
end function EXP;
function EXP(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns Z on error
variable ZTEMP : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in EXP(Z)"
severity ERROR;
return Z;
end if;
-- Get value for special cases
if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(1.0, 0.0);
end if;
if ( Z.MAG = MATH_PI and (Z.ARG = MATH_PI_OVER_2 or
Z.ARG = -MATH_PI_OVER_2 )) then
return COMPLEX_POLAR'(1.0, MATH_PI);
end if;
if ( Z.MAG = MATH_PI_OVER_2 ) then
if ( Z.ARG = MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(1.0, MATH_PI_OVER_2);
end if;
if ( Z.ARG = -MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2);
end if;
end if;
-- Get principal value for general case
ZTEMP := POLAR_TO_COMPLEX(Z);
ZOUT.MAG := POSITIVE_REAL'(EXP(ZTEMP.RE));
ZOUT.ARG := GET_PRINCIPAL_VALUE(ZTEMP.IM);
return ZOUT;
end function EXP;
function LOG(Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX'(REAL'LOW, 0.0) on error
variable ZTEMP : COMPLEX_POLAR;
variable TEMP : REAL;
begin
-- Check validity of input arguments
if ( Z.RE = 0.0 and Z.IM = 0.0 ) then
assert FALSE
report "Z.RE = 0.0 and Z.IM = 0.0 in LOG(Z)"
severity ERROR;
return COMPLEX'(REAL'LOW, 0.0);
end if;
-- Get value for special cases
if ( Z.IM = 0.0 ) then
if ( Z.RE = -1.0 ) then
return COMPLEX'(0.0, MATH_PI);
end if;
if ( Z.RE = MATH_E ) then
return MATH_CBASE_1;
end if;
if ( Z.RE = 1.0 ) then
return MATH_CZERO;
end if;
end if;
if ( Z.RE = 0.0 ) then
if (Z.IM = 1.0) then
return COMPLEX'(0.0, MATH_PI_OVER_2);
end if;
if (Z.IM = -1.0) then
return COMPLEX'(0.0, -MATH_PI_OVER_2);
end if;
end if;
-- Get value for general case
ZTEMP := COMPLEX_TO_POLAR(Z);
TEMP := LOG(ZTEMP.MAG);
return COMPLEX'(TEMP, ZTEMP.ARG);
end function LOG;
function LOG2(Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX'(REAL'LOW, 0.0) on error
variable ZTEMP : COMPLEX_POLAR;
variable TEMP : REAL;
begin
-- Check validity of input arguments
if ( Z.RE = 0.0 and Z.IM = 0.0 ) then
assert FALSE
report "Z.RE = 0.0 and Z.IM = 0.0 in LOG2(Z)"
severity ERROR;
return COMPLEX'(REAL'LOW, 0.0);
end if;
-- Get value for special cases
if ( Z.IM = 0.0 ) then
if ( Z.RE = 2.0 ) then
return MATH_CBASE_1;
end if;
if ( Z.RE = 1.0 ) then
return MATH_CZERO;
end if;
end if;
-- Get value for general case
ZTEMP := COMPLEX_TO_POLAR(Z);
TEMP := MATH_LOG2_OF_E*LOG(ZTEMP.MAG);
return COMPLEX'(TEMP, MATH_LOG2_OF_E*ZTEMP.ARG);
end function LOG2;
function LOG10(Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX'(REAL'LOW, 0.0) on error
variable ZTEMP : COMPLEX_POLAR;
variable TEMP : REAL;
begin
-- Check validity of input arguments
if ( Z.RE = 0.0 and Z.IM = 0.0 ) then
assert FALSE
report "Z.RE = 0.0 and Z.IM = 0.0 in LOG10(Z)"
severity ERROR;
return COMPLEX'(REAL'LOW, 0.0);
end if;
-- Get value for special cases
if ( Z.IM = 0.0 ) then
if ( Z.RE = 10.0 ) then
return MATH_CBASE_1;
end if;
if ( Z.RE = 1.0 ) then
return MATH_CZERO;
end if;
end if;
-- Get value for general case
ZTEMP := COMPLEX_TO_POLAR(Z);
TEMP := MATH_LOG10_OF_E*LOG(ZTEMP.MAG);
return COMPLEX'(TEMP, MATH_LOG10_OF_E*ZTEMP.ARG);
end function LOG10;
function LOG(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR(REAL'HIGH, MATH_PI) on error
variable ZTEMP : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( Z.MAG <= 0.0 ) then
assert FALSE
report "Z.MAG <= 0.0 in LOG(Z)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
end if;
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in LOG(Z)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
end if;
-- Compute value for special cases
if (Z.MAG = 1.0 ) then
if ( Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( Z.ARG = MATH_PI ) then
return COMPLEX_POLAR'(MATH_PI, MATH_PI_OVER_2);
end if;
if ( Z.ARG = MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(MATH_PI_OVER_2, MATH_PI_OVER_2);
end if;
if ( Z.ARG = -MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(MATH_PI_OVER_2, -MATH_PI_OVER_2);
end if;
end if;
if ( Z.MAG = MATH_E and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(1.0, 0.0);
end if;
-- Compute value for general case
ZTEMP.RE := LOG(Z.MAG);
ZTEMP.IM := Z.ARG;
ZOUT := COMPLEX_TO_POLAR(ZTEMP);
return ZOUT;
end function LOG;
function LOG2(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR(REAL'HIGH, MATH_PI) on error
variable ZTEMP : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( Z.MAG <= 0.0 ) then
assert FALSE
report "Z.MAG <= 0.0 in LOG2(Z)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
end if;
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in LOG2(Z)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
end if;
-- Compute value for special cases
if (Z.MAG = 1.0 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( Z.MAG = 2.0 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(1.0, 0.0);
end if;
-- Compute value for general case
ZTEMP.RE := MATH_LOG2_OF_E*LOG(Z.MAG);
ZTEMP.IM := MATH_LOG2_OF_E*Z.ARG;
ZOUT := COMPLEX_TO_POLAR(ZTEMP);
return ZOUT;
end function LOG2;
function LOG10(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR(REAL'HIGH, MATH_PI) on error
variable ZTEMP : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( Z.MAG <= 0.0 ) then
assert FALSE
report "Z.MAG <= 0.0 in LOG10(Z)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
end if;
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in LOG10(Z)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
end if;
-- Compute value for special cases
if (Z.MAG = 1.0 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( Z.MAG = 10.0 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(1.0, 0.0);
end if;
-- Compute value for general case
ZTEMP.RE := MATH_LOG10_OF_E*LOG(Z.MAG);
ZTEMP.IM := MATH_LOG10_OF_E*Z.ARG;
ZOUT := COMPLEX_TO_POLAR(ZTEMP);
return ZOUT;
end function LOG10;
function LOG(Z: in COMPLEX; BASE: in REAL ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX'(REAL'LOW, 0.0) on error
variable ZTEMP : COMPLEX_POLAR;
variable TEMPRE : REAL;
variable TEMPIM : REAL;
begin
-- Check validity of input arguments
if ( Z.RE = 0.0 and Z.IM = 0.0 ) then
assert FALSE
report "Z.RE = 0.0 and Z.IM = 0.0 in LOG(Z,BASE)"
severity ERROR;
return COMPLEX'(REAL'LOW, 0.0);
end if;
if ( BASE <= 0.0 or BASE = 1.0 ) then
assert FALSE
report "BASE <= 0.0 or BASE = 1.0 in LOG(Z,BASE)"
severity ERROR;
return COMPLEX'(REAL'LOW, 0.0);
end if;
-- Get value for special cases
if ( Z.IM = 0.0 ) then
if ( Z.RE = BASE ) then
return MATH_CBASE_1;
end if;
if ( Z.RE = 1.0 ) then
return MATH_CZERO;
end if;
end if;
-- Get value for general case
ZTEMP := COMPLEX_TO_POLAR(Z);
TEMPRE := LOG(ZTEMP.MAG, BASE);
TEMPIM := ZTEMP.ARG/LOG(BASE);
return COMPLEX'(TEMPRE, TEMPIM);
end function LOG;
function LOG(Z: in COMPLEX_POLAR; BASE: in REAL ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR(REAL'HIGH, MATH_PI) on error
variable ZTEMP : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( Z.MAG <= 0.0 ) then
assert FALSE
report "Z.MAG <= 0.0 in LOG(Z,BASE)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
end if;
if ( BASE <= 0.0 or BASE = 1.0 ) then
assert FALSE
report "BASE <= 0.0 or BASE = 1.0 in LOG(Z,BASE)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
end if;
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in LOG(Z,BASE)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, MATH_PI);
end if;
-- Compute value for special cases
if (Z.MAG = 1.0 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( Z.MAG = BASE and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(1.0, 0.0);
end if;
-- Compute value for general case
ZTEMP.RE := LOG(Z.MAG, BASE);
ZTEMP.IM := Z.ARG/LOG(BASE);
ZOUT := COMPLEX_TO_POLAR(ZTEMP);
return ZOUT;
end function LOG;
function SIN(Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
-- Get value for special cases
if ( Z.IM = 0.0 ) then
if ( Z.RE = 0.0 or Z.RE = MATH_PI) then
return MATH_CZERO;
end if;
end if;
-- Get value for general case
return COMPLEX'(SIN(Z.RE)*COSH(Z.IM), COS(Z.RE)*SINH(Z.IM));
end function SIN;
function SIN(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR(0.0, 0.0) on error
variable Z1, Z2 : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in SIN(Z)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Compute value for special cases
if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( Z.MAG = MATH_PI and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Compute value for general case
Z1 := POLAR_TO_COMPLEX(Z);
Z2 := COMPLEX'(SIN(Z1.RE)*COSH(Z1.IM), COS(Z1.RE)*SINH(Z1.IM));
ZOUT := COMPLEX_TO_POLAR(Z2);
return ZOUT;
end function SIN;
function COS(Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
-- Get value for special cases
if ( Z.IM = 0.0 ) then
if ( Z.RE = MATH_PI_OVER_2 or Z.RE = -MATH_PI_OVER_2) then
return MATH_CZERO;
end if;
end if;
-- Get value for general case
return COMPLEX'(COS(Z.RE)*COSH(Z.IM), -SIN(Z.RE)*SINH(Z.IM));
end function COS;
function COS(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR(0.0, 0.0) on error
variable Z1, Z2 : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in COS(Z)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Compute value for special cases
if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = MATH_PI ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Compute value for general case
Z1 := POLAR_TO_COMPLEX(Z);
Z2 := COMPLEX'(COS(Z1.RE)*COSH(Z1.IM), -SIN(Z1.RE)*SINH(Z1.IM));
ZOUT := COMPLEX_TO_POLAR(Z2);
return ZOUT;
end function COS;
function SINH(Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
-- Get value for special cases
if ( Z.RE = 0.0 ) then
if ( Z.IM = 0.0 or Z.IM = MATH_PI ) then
return MATH_CZERO;
end if;
if ( Z.IM = MATH_PI_OVER_2 ) then
return MATH_CBASE_J;
end if;
if ( Z.IM = -MATH_PI_OVER_2 ) then
return -MATH_CBASE_J;
end if;
end if;
-- Get value for general case
return COMPLEX'(SINH(Z.RE)*COS(Z.IM), COSH(Z.RE)*SIN(Z.IM));
end function SINH;
function SINH(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR(0.0, 0.0) on error
variable Z1, Z2 : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in SINH(Z)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Compute value for special cases
if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( Z.MAG = MATH_PI and Z.ARG = MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(1.0, MATH_PI_OVER_2);
end if;
if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2);
end if;
-- Compute value for general case
Z1 := POLAR_TO_COMPLEX(Z);
Z2 := COMPLEX'(SINH(Z1.RE)*COS(Z1.IM), COSH(Z1.RE)*SIN(Z1.IM));
ZOUT := COMPLEX_TO_POLAR(Z2);
return ZOUT;
end function SINH;
function COSH(Z: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
-- Get value for special cases
if ( Z.RE = 0.0 ) then
if ( Z.IM = 0.0 ) then
return MATH_CBASE_1;
end if;
if ( Z.IM = MATH_PI ) then
return -MATH_CBASE_1;
end if;
if ( Z.IM = MATH_PI_OVER_2 or Z.IM = -MATH_PI_OVER_2 ) then
return MATH_CZERO;
end if;
end if;
-- Get value for general case
return COMPLEX'(COSH(Z.RE)*COS(Z.IM), SINH(Z.RE)*SIN(Z.IM));
end function COSH;
function COSH(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR(0.0, 0.0) on error
variable Z1, Z2 : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( Z.ARG = -MATH_PI ) then
assert FALSE
report "Z.ARG = -MATH_PI in COSH(Z)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Compute value for special cases
if ( Z.MAG = 0.0 and Z.ARG = 0.0 ) then
return COMPLEX_POLAR'(1.0, 0.0);
end if;
if ( Z.MAG = MATH_PI and Z.ARG = MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(1.0, MATH_PI);
end if;
if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( Z.MAG = MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2 ) then
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Compute value for general case
Z1 := POLAR_TO_COMPLEX(Z);
Z2 := COMPLEX'(COSH(Z1.RE)*COS(Z1.IM), SINH(Z1.RE)*SIN(Z1.IM));
ZOUT := COMPLEX_TO_POLAR(Z2);
return ZOUT;
end function COSH;
--
-- Arithmetic Operators
--
function "+" ( L: in COMPLEX; R: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(L.RE + R.RE, L.IM + R.IM);
end function "+";
function "+" ( L: in REAL; R: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(L + R.RE, R.IM);
end function "+";
function "+" ( L: in COMPLEX; R: in REAL ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(L.RE + R, L.IM);
end function "+";
function "+" (L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
--
variable ZL, ZR : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in +(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_PI in +(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZL := POLAR_TO_COMPLEX( L );
ZR := POLAR_TO_COMPLEX( R );
ZOUT := COMPLEX_TO_POLAR(COMPLEX'(ZL.RE + ZR.RE, ZL.IM +ZR.IM));
return ZOUT;
end function "+";
function "+" ( L: in REAL; R: in COMPLEX_POLAR) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
variable ZR : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_PI in +(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZR := POLAR_TO_COMPLEX( R );
ZOUT := COMPLEX_TO_POLAR(COMPLEX'(L + ZR.RE, ZR.IM));
return ZOUT;
end function "+";
function "+" ( L: in COMPLEX_POLAR; R: in REAL) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
--
variable ZL : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in +(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZL := POLAR_TO_COMPLEX( L );
ZOUT := COMPLEX_TO_POLAR(COMPLEX'(ZL.RE + R, ZL.IM));
return ZOUT;
end function "+";
function "-" ( L: in COMPLEX; R: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(L.RE - R.RE, L.IM - R.IM);
end function "-";
function "-" ( L: in REAL; R: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(L - R.RE, -1.0 * R.IM);
end function "-";
function "-" ( L: in COMPLEX; R: in REAL ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(L.RE - R, L.IM);
end function "-";
function "-" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
--
variable ZL, ZR : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in -(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_PI in -(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZL := POLAR_TO_COMPLEX( L );
ZR := POLAR_TO_COMPLEX( R );
ZOUT := COMPLEX_TO_POLAR(COMPLEX'(ZL.RE - ZR.RE, ZL.IM -ZR.IM));
return ZOUT;
end function "-";
function "-" ( L: in REAL; R: in COMPLEX_POLAR) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
--
variable ZR : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_PI in -(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZR := POLAR_TO_COMPLEX( R );
ZOUT := COMPLEX_TO_POLAR(COMPLEX'(L - ZR.RE, -1.0*ZR.IM));
return ZOUT;
end function "-";
function "-" ( L: in COMPLEX_POLAR; R: in REAL) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
--
variable ZL : COMPLEX;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in -(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZL := POLAR_TO_COMPLEX( L );
ZOUT := COMPLEX_TO_POLAR(COMPLEX'(ZL.RE - R, ZL.IM));
return ZOUT;
end function "-";
function "*" ( L: in COMPLEX; R: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(L.RE * R.RE - L.IM * R.IM, L.RE * R.IM + L.IM * R.RE);
end function "*";
function "*" ( L: in REAL; R: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(L * R.RE, L * R.IM);
end function "*";
function "*" ( L: in COMPLEX; R: in REAL ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- None
begin
return COMPLEX'(L.RE * R, L.IM * R);
end function "*";
function "*" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
--
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in *(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_PI in *(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZOUT.MAG := L.MAG * R.MAG;
ZOUT.ARG := GET_PRINCIPAL_VALUE(L.ARG + R.ARG);
return ZOUT;
end function "*";
function "*" ( L: in REAL; R: in COMPLEX_POLAR) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
--
variable ZL : COMPLEX_POLAR;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_PI in *(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZL.MAG := POSITIVE_REAL'(ABS(L));
if ( L < 0.0 ) then
ZL.ARG := MATH_PI;
else
ZL.ARG := 0.0;
end if;
ZOUT.MAG := ZL.MAG * R.MAG;
ZOUT.ARG := GET_PRINCIPAL_VALUE(ZL.ARG + R.ARG);
return ZOUT;
end function "*";
function "*" ( L: in COMPLEX_POLAR; R: in REAL) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(0.0, 0.0) on error
--
variable ZR : COMPLEX_POLAR;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in *(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZR.MAG := POSITIVE_REAL'(ABS(R));
if ( R < 0.0 ) then
ZR.ARG := MATH_PI;
else
ZR.ARG := 0.0;
end if;
ZOUT.MAG := L.MAG * ZR.MAG;
ZOUT.ARG := GET_PRINCIPAL_VALUE(L.ARG + ZR.ARG);
return ZOUT;
end function "*";
function "/" ( L: in COMPLEX; R: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX'(REAL'HIGH, 0.0) on error
--
constant TEMP : REAL := R.RE*R.RE + R.IM*R.IM;
begin
-- Check validity of input arguments
if (TEMP = 0.0) then
assert FALSE
report "Attempt to divide COMPLEX by (0.0, 0.0)"
severity ERROR;
return COMPLEX'(REAL'HIGH, 0.0);
end if;
-- Get value
return COMPLEX'( (L.RE * R.RE + L.IM * R.IM) / TEMP,
(L.IM * R.RE - L.RE * R.IM) / TEMP);
end function "/";
function "/" ( L: in REAL; R: in COMPLEX ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX'(REAL'HIGH, 0.0) on error
--
variable TEMP : REAL := R.RE*R.RE + R.IM*R.IM;
begin
-- Check validity of input arguments
if (TEMP = 0.0) then
assert FALSE
report "Attempt to divide COMPLEX by (0.0, 0.0)"
severity ERROR;
return COMPLEX'(REAL'HIGH, 0.0);
end if;
-- Get value
TEMP := L / TEMP;
return COMPLEX'( TEMP * R.RE, -TEMP * R.IM );
end function "/";
function "/" ( L: in COMPLEX; R: in REAL ) return COMPLEX is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX'(REAL'HIGH, 0.0) on error
begin
-- Check validity of input arguments
if (R = 0.0) then
assert FALSE
report "Attempt to divide COMPLEX by 0.0"
severity ERROR;
return COMPLEX'(REAL'HIGH, 0.0);
end if;
-- Get value
return COMPLEX'(L.RE / R, L.IM / R);
end function "/";
function "/" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(REAL'HIGH, 0.0) on error
--
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if (R.MAG = 0.0) then
assert FALSE
report "Attempt to divide COMPLEX_POLAR by (0.0, 0.0)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, 0.0);
end if;
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in /(L,R)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, 0.0);
end if;
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_PI in /(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZOUT.MAG := L.MAG/R.MAG;
ZOUT.ARG := GET_PRINCIPAL_VALUE(L.ARG - R.ARG);
return ZOUT;
end function "/";
function "/" ( L: in COMPLEX_POLAR; R: in REAL) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(REAL'HIGH, 0.0) on error
--
variable ZR : COMPLEX_POLAR;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if (R = 0.0) then
assert FALSE
report "Attempt to divide COMPLEX_POLAR by 0.0"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, 0.0);
end if;
if ( L.ARG = -MATH_PI ) then
assert FALSE
report "L.ARG = -MATH_PI in /(L,R)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, 0.0);
end if;
-- Get principal value
ZR.MAG := POSITIVE_REAL'(ABS(R));
if R < 0.0 then
ZR.ARG := MATH_PI;
else
ZR.ARG := 0.0;
end if;
ZOUT.MAG := L.MAG/ZR.MAG;
ZOUT.ARG := GET_PRINCIPAL_VALUE(L.ARG - ZR.ARG);
return ZOUT;
end function "/";
function "/" ( L: in REAL; R: in COMPLEX_POLAR) return COMPLEX_POLAR is
-- Description:
-- See function declaration in IEEE Std 1076.2-1996
-- Notes:
-- a) Returns COMPLEX_POLAR'(REAL'HIGH, 0.0) on error
--
variable ZL : COMPLEX_POLAR;
variable ZOUT : COMPLEX_POLAR;
begin
-- Check validity of input arguments
if (R.MAG = 0.0) then
assert FALSE
report "Attempt to divide COMPLEX_POLAR by (0.0, 0.0)"
severity ERROR;
return COMPLEX_POLAR'(REAL'HIGH, 0.0);
end if;
if ( R.ARG = -MATH_PI ) then
assert FALSE
report "R.ARG = -MATH_P in /(L,R)"
severity ERROR;
return COMPLEX_POLAR'(0.0, 0.0);
end if;
-- Get principal value
ZL.MAG := POSITIVE_REAL'(ABS(L));
if L < 0.0 then
ZL.ARG := MATH_PI;
else
ZL.ARG := 0.0;
end if;
ZOUT.MAG := ZL.MAG/R.MAG;
ZOUT.ARG := GET_PRINCIPAL_VALUE(ZL.ARG - R.ARG);
return ZOUT;
end function "/";
end package body MATH_COMPLEX;