64 lines
1.4 KiB
Markdown
64 lines
1.4 KiB
Markdown
<!-- # Slide-SAM -->
|
||
# Slide-SAM: Medical SAM meets sliding window
|
||
|
||
We upload the checkpoint recently!
|
||
Please download by
|
||
|
||
https://pan.baidu.com/s/1jvJ2W4MK24JdpZLwPqMIfA
|
||
|
||
code:7be9
|
||
|
||
## Before Training
|
||
### install tutils
|
||
```
|
||
pip install trans-utils
|
||
```
|
||
|
||
### prepare datasets
|
||
We recommend you to convert the dataset into the nnUNet format.
|
||
```
|
||
00_custom_dataset
|
||
imagesTr
|
||
xxx_0000.nii.gz
|
||
...
|
||
labelsTr
|
||
xxx.nii.gz
|
||
...
|
||
```
|
||
try to use the function ```organize_in_nnunet_style``` or ```organize_by_names``` to prepare your custom datasets.
|
||
|
||
Then run
|
||
```
|
||
python -m datasets.generate_txt
|
||
```
|
||
|
||
A ```[example]_train.txt``` will be generated in ```./datasets/dataset_list/```
|
||
|
||
The content should be like below
|
||
```
|
||
01_BCV-Abdomen/Training/img/img0001.nii.gz 01_BCV-Abdomen/Training/label/label0001.nii.gz
|
||
01_BCV-Abdomen/Training/img/img0002.nii.gz 01_BCV-Abdomen/Training/label/label0002.nii.gz
|
||
01_BCV-Abdomen/Training/img/img0003.nii.gz 01_BCV-Abdomen/Training/label/label0003.nii.gz
|
||
```
|
||
|
||
### cache 3d data into slices
|
||
After generating the ```[example]_train.txt``` file, check the config file ```configs/vit_b.yaml```.
|
||
|
||
Update the params in ```dataset``` by yours. And the ```dataset_list``` should be the name of the generated txt file ```[example]```.
|
||
|
||
Then run
|
||
```
|
||
python -m datasets.cache_dataset3d
|
||
```
|
||
|
||
## Training
|
||
run training
|
||
```
|
||
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m core.ddp --tag debug
|
||
```
|
||
|
||
## Testing
|
||
```
|
||
python -m core.volume_predictor
|
||
```
|